Name _____

CSE Login _____

Problem	Page	Points	Score
2.4.2	160	5	
2.4.6 (c,d)	161	6	
2.4.10 (e-h)	161	8	
2.4.14 (c,d)	161	6	
2.4.18 (c,d)	162	6	
2.4.22 (Bonus)	162	5	
3.2.8 (b,d)	191	4	
3.2.10	191	5	
3.2.20 (c)	191	4	
3.2.24(bc)	191	8	
3.2.32 (Bonus)	191	4	
А		6	
В		6	
C.1		4	
C.2		4	
C.3		4	
D		8	
Е		8	
F		8	
Total		100	
Typesetting in LAT _E X (bonus)		8	

$\mathbf{Problem}\ \mathbf{A}\ \mathrm{Let}$

$$\begin{array}{rcl} f(n) &=& (k_1)^{c_1 n} \\ g(n) &=& (k_2)^{c_2 n} \end{array}$$

Where k_1, k_2, c_1, c_2 are all real numbers greater than 1. Under what conditions can you say that $f(n) \in \mathcal{O}(g(n))$

Problem B Prove that

$$1^k + 2^k + \dots + n^k \in \mathcal{O}(n^{k+1})$$

Problem C Order the following functions in non-decreasing order of growth. You need not give a formal proof for each.

1. $6n \log(n) + 2n$, $\left(\frac{1}{3}\right)^n$, n^n , $\log \log(n)$. 2. $\log^2(n)$, $\frac{1}{n}$, 2^{10} , $n - n^3 + 6n^5$, $\frac{n}{\log(n)}$, n!. 3. $2^{\log(n)}$, 2^n , 2^4n , 4^2n , $3n + \log(n^{100})$, $\log(n) \log \log(n)$

Problem D Give and analyze an algorithm for the following problem. Write clearly and neatly your pseudocode. $L^{AT}EX$ users can use algorithm2e.sty package, which can be easily found on the web.

Given an *n* vertex convex polygon described by coordinates $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, find the three vertices whose corresponding triangle has maximum perimeter.

Problem E Give a tight bound of the form $f(n) \in \Delta(g(n))$ for the following pairs of functions, knowing that $(\log_b(f(x))' = \frac{f'(x)}{f(x) \ln b})$:

- 1. $f(x) = x^2 \log x$ and $g(x) = x^3$
- 2. $f(x) = x^4 + \log(3x^8 + 7)$ and $g(x) = (x^2 + 17x + 3)^2$
- 3. $f(x) = \log(x^2 + 1)$ and $g(x) = \log(x)$.
- 4. $f(x) = 2^{2^x}$ and $g(x) = 2^{x^2}$

Problem F Suppose that f(x), g(x) and h(x) are positive functions such that $f(x) \in \mathcal{O}(g(x))$ and $g(x) \in \mathcal{O}(h(x))$. Show that $f(x) \in \mathcal{O}(h(x))$. Write your proof as formally and neatly as possible.

Instructions Follow instructions carefully, failure to do so may result in points being deducted.

- The homework can be submitted on paper or via handin. Homework neatly formatted in LATEX will receive a 8 point bonus. You will not receive the 8 points bonus if you work with a partner (see below).
- Clearly label each problem and submit the answers in order.
- Staple this cover page to the front of your assignment for easier grading.
- Late submissions will not be accepted.
- Show sufficient work to justify your answer(s). *Sloppy, hard to read papers will not be graded* (please have mercy...).
- When you are asked to prove something, you must give as formal, rigorous, and complete a proof as possible.
- You are to work individually, and all work should be your own. Check partner policy below.
- The CSE academic dishonesty policy is in effect (see http://www.cse.unl.edu/undergrads/academic_integrity. php).

Partner Policy You may work in pairs, but you must follow these guidelines:

- 1. You must work on all problems together. You may not simply partition the work between you.
- 2. You must use IATFX and you may divide the typing duties however you wish.
- 3. You may not discuss problems with other groups or individuals.
- 4. Hand in only one hard copy under the first author's name.