Title: First-Order Logic
AIMA: Chapter 8 (Sections 8.1 and 8.2)
Section 8.3, discussed briefly, is also required reading
$-\quad$ Introduction to Artificial Intelligence
CSCE 476-876, Spring 2009
URL: www.cse.unl.edu/~ choueiry/S09-476-876

Berthe Y. Choueiry (Shu-we-ri)
choueiry@cse.unl.edu, (402)472-5444

Outline

- First-order logic:
- basic elements
- syntax
- semantics
- Examples

Pros and cons of propositional logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)
- Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- but...

Propositional logic has very limited expressive power E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

Propositional Logic

- is simple
- illustrates important points: model, inference, validity, satisfiability, ..
- is restrictive: world is a set of facts
- lacks expressiveness:
\rightarrow In PL, world contains facts

First-Order Logic

- more symbols (objects, properties, relations)
- more connectives (quantifier)

First Order Logic

\rightarrow FOL provides more "primitives" to express knowledge:

- objects (identity \& properties)
- relations among objects (including functions)
ci Objects: people, houses, numbers, Einstein, Huskers, event, ..
Properties: smart, nice, large, intelligent, loved, occurred, ..
Relations: brother-of, bigger-than, part-of, occurred-after, ..
Functions: father-of, best-friend, double-of, ..

Examples: (objects? function? relation? property?)
- one plus two equals four
- squares neighboring the wumpus are smelly

Logic

Attracts: mathematicians, philosophers and AI people

Advantages:

- allows to represent the world and reason about it
- expresses anything that can be programmed

Non-committal to:

o - symbols could be objects or relations
(e.g., King(Gustave), King(Sweden, Gustave), Merciless(King))

- classes, categories, time, events, uncertainty
.. but amenable to extensions: OO FOL, temporal logics, situation/event calculus, modal logic, etc.
\longrightarrow Some people think FOL ${ }^{\text {is* }}$ * the language of AI true/false? donno :-(but it will remain around for some time..

Syntax of FOL: words and grammar
The words: symbols

- Constant symbols stand for objects: QueenMary, 2, UNL, etc.
- Variable symbols stand for objects: x, y, etc.
- Predicate symbols stand for relations: Odd, Even, Brother, Sibling, etc.
- Function symbols stand for functions (viz. relation)

Father-of, Square-root, LeftLeg, etc.

- Quantifiyers \forall, \exists
- Connectives: $\wedge, \vee, \neg, \Rightarrow, \Leftrightarrow$,
- (Sometimes) equality $=$

Predicates and functions can have any arity (number of arguments)

Basic elements in FOL (i.e., the grammar)
In propositional logic, every expression is a sentence

In FOL,

- Terms
- Sentences:
- atomic sentences
- complex sentences
- Quantifiers:
- Universal quantifier
- Existential quantifier

$\stackrel{0}{6}$
 \longleftrightarrow
 Term

logical expression that refers to an object

- built with: constant symbols, variables, function symbols

Term $=$ function $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$
or constant or variable

- ground term: term with no variable

Atomic sentences

state facts
built with terms and predicate symbols

Atomic sentence $=$ predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term $_{1}=$ term $_{2}$

Examples：

Brother（Richard，John）
Married（FatherOf（Richard），MotherOf（John））

Complex Sentences

```
built with atomic sentences and logical connectives
\(\neg S\)
\(S_{1} \wedge S_{2}\)
\(S_{1} \vee S_{2}\)
\(S_{1} \Rightarrow S_{2}\)
\(S_{1} \Leftrightarrow S_{2}\)
```


Examples：

```
乙I\＃seqou s،xoqonxisuI
Sibling（KingJohn，Richard）\(\Rightarrow\) Sibling（Richard，KingJohn）
\(>(1,2) \vee \leq(1,2)\)
\(>(1,2) \wedge \neg>(1,2)\)
```

Truth in first-order logic: Semantic
Sentences are true with respect to a model and an interpretation
Model contains objects and relations among them
Interpretation specifies referents for
\rightleftarrows constant symbols $\rightarrow \underline{\text { objects }}$
predicate symbols \rightarrow relations
function symbols \rightarrow functional relations
An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Models for FOL: Lots!

We can enumerate the models for a given KB vocabulary:
For each number of domain elements n from 1 to ∞
For each k-ary predicate P_{k} in the vocabulary
For each possible k-ary relation on n objects
$\stackrel{C}{c} \quad$ For each constant symbol C in the vocabulary
For each choice of referent for C from n objects ...
Computing entailment by enumerating models is not going to be easy!

总 There are many possible interpretations, also some model domain are not bounded
\longrightarrow Checking entailment by enumerating is not an option

Quantifiers

๑ allow to make statements about entire collections of objects

- universal quantifier: make statements about everything
- existential quantifier: make statements about some things

Universal quantification

$\forall\langle$ variables $\rangle\langle$ sentence〉
Example：all dogs like bones $\forall x \operatorname{Dog}(x) \Rightarrow \operatorname{LikeBones}(x)$ $\mathrm{x}=$ Indy is a dog $\quad \mathrm{x}=$ Indiana Jones is a person
$\forall x P$ is equivalent to the conjunction of instantiations of P

$$
\begin{aligned}
& \operatorname{Dog}(\text { Indy }) \Rightarrow \operatorname{LikeBones}(\text { Indy }) \\
\wedge & \operatorname{Dog}(\text { Rebel }) \Rightarrow \operatorname{LikeBones}(\text { Rebel }) \\
\wedge & \operatorname{Dog}(\text { KingJohn }) \Rightarrow \operatorname{LikeBones(KingJohn~}) \\
\wedge & \ldots
\end{aligned}
$$

Typically：\Rightarrow is the main connective with \forall Common mistake：using \wedge as the main connective with \forall Example：$\forall x \operatorname{Dog}(x) \wedge \operatorname{LikeBones}(x)$ all objects in the world are dogs，and all like bones

Existential quantification

$\exists\langle$ variables〉〈sentence〉
Example：some student will talk at the TechFair
$\exists x \operatorname{Student}(x) \wedge$ TalksAtTechFair (x)
Pat，Leslie，Chris are students
$\exists x P$ is equivalent to the disjunction of instantiations of P

$$
\begin{array}{ll}
& \text { Student }(\text { Pat }) \wedge \text { TalksAtTechFair }(\text { Pat }) \\
\vee & \text { Student }(\text { Leslie }) \wedge \text { TalksAtTechFair }(\text { Leslie }) \\
\vee & \text { Student }(\text { Chris }) \wedge \text { TalksAtTechFair }(\text { Chris }) \\
\vee & \ldots
\end{array}
$$

Typically：\wedge is the main connective with \exists
Common mistake：using \Rightarrow as the main connective with \exists
$\exists x \operatorname{Student}(x) \Rightarrow$ TalksAtTechFair (x)
is true if there is anyone who is not Student

Properties of quantifiers (I)

$\forall x \forall y$ is the same as $\forall y \forall x$
$\exists x \exists y$ is the same as $\exists y \exists x$
$\exists x \forall y$ is not the same as $\forall y \exists x$
$\exists x \forall y \operatorname{Loves}(x, y)$
\checkmark "There is a person who loves everyone in the world"
$\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other

$\forall x \operatorname{Likes}(x$, IceCream $) \quad \neg \exists x \neg \operatorname{Likes}(x$, IceCream)
$\exists x \operatorname{Likes}(x$, Broccoli) $\quad \neg \forall x \neg \operatorname{Likes}(x$, Broccoli)
Parsimony principal: \forall, \neg, and \Rightarrow are sufficient

Properties of quantifiers (II)

Nested quantifier:
$\forall x(\exists y(P(x, y))$:
every object in the world has a particular property, which is the property to be related to some object by the relation P
$\exists x(\forall y(P(x, y))$:
there is some object in the world that has a particular property, which is the property to be related to every object by the relation P

Lexical scoping: $\forall x[\operatorname{Cat}(x) \vee \exists x \operatorname{Brother}(\operatorname{Richard}, x)]$

Well-formed formulas (WFF): (kind of correct spelling)
every variable must be introduced by a quantifier $\forall x P(y)$ is not a WFF

Examples

Brothers are siblings
"Sibling" is symmetric

One's mother is one's female parent

A first cousin is a child of a parent's sibling

$\stackrel{+}{4}$

Examples

$$
\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

```
\forallx,y Sibling}(x,y)=>\operatorname{Sibling}(y,x
```

$\forall x, y \operatorname{Mother}(x, y) \Rightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$
$\forall x, y \operatorname{FirstCousin}(x, y) \Leftrightarrow$ $\exists a, b \operatorname{Parent}(a, x) \wedge \operatorname{Sibling}(a, b) \wedge \operatorname{Parent}(b, y)$

Tricky example

Someone is loved by everyone
$\exists x \forall y \operatorname{Loves}(y, x)$
๗
Someone with red-hair is loved by everyone
$\exists x \forall y \operatorname{Redhair}(x) \wedge \operatorname{Loves}(y, x)$

Alternatively:
$\exists x \operatorname{Person}(x) \wedge \operatorname{Redhair}(x) \wedge(\forall y \operatorname{Person}(y) \Rightarrow \operatorname{Loves}(y, x))$
E-2

Equality

term $_{1}=$ term $_{2}$ is true under a given interpretation
if and only if term m_{1} and term m_{2} refer to the same object
Examples

- Father(John)=Henry
- $1=2$ is satisfiable
- $2=2$ is valid
- Useful to distinguish two objects:
- Definition of (full) Sibling in terms of Parent:
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=$
f) $\wedge \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$
- Spot has at least two sisters: ...

AIMA, Exercise 8.4 \& 8.7

Knowledge representation (KR)

Domain: a section of the world about which we wish to express some knowledge

Example: Family relations (kinship):

- Objects: people
- Properties: gender, married, divorced, single, widowed
- Relations: parenthood, brotherhood, marriage..

Unary predicates: Male, Female
Binary relations: Parent, Sibling, Brother, Child, etc.
Functions: Mother, Father
$\forall m, c, \operatorname{Mother}(c)=m \Leftrightarrow \operatorname{Female}(m) \wedge \operatorname{Parent}(m, c)$

In Logic (informally)

- Basic facts: axioms
- Derived facts: theorems

Independent axiom

an axiom that cannot be derived from the rest
\longrightarrow Goal of mathematicians: find the minimal set of independent axioms

In AI

- Assertions: sentences added to a KB using TELL
- Queries or goals: sentences asked to KB using ASK

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

Tell(KB, Percept([Smell, Breeze, None], 5))
$\operatorname{Ask}(K B, \exists a \operatorname{Action}(a, 5))$
I.e., does the KB entail any particular actions at $t=5$?

Answer: Yes, $\{a /$ Shoot $\} \quad \leftarrow$ substitution (binding list)
Given a sentence S and a substitution σ,
$S \sigma$ denotes the result of plugging σ into S; e.g.,
$S=\operatorname{Smarter}(x, y)$
$\sigma=\{x /$ Hillary,$y /$ Bill $\}$
S $\sigma=$ Smarter (Hillary, Bill)
$\operatorname{Ask}(K B, S)$ returns some/all σ such that $K B \models S \sigma$

Prepare for next lecture: AIMA, Exercise 8.6, page 268
Takes (x, c, s) : student x takes course c in semester s
Passes (x, c, s) : student x passes course c in semester s
Score (x, c, s) : the score obtained by student x in course c in semester s
$x>y$: x is greater that y
F and G : specific French and Greek courses
$\operatorname{Buys}(x, y, z): x$ buys y from z
Sells (x, y, z) : x sells y from z
Shaves (x, y) : person x shaves person y
Born (x, c) : person x is born in country c
Parent (x, y) : person x is parent of person y
$\operatorname{Citizen}(x, c, r)$: person x is citizen of country c for reason r
Resident (x, c) : person x is resident of country c of person y
Fools (x, y, t) : person x fools person y at time t
Student (x), Person $(x), \operatorname{Man}(x)$, $\operatorname{Barber}(x)$, Expensive (x), Agent (x), $\operatorname{Insured}(x), \operatorname{Smart}(x), \operatorname{Politician}(x)$,

AI Limerick

If your thesis is utterly vacuous
Use first-order predicate calculus
With sufficient formality
The sheerest banality
Will be hailed by the critics: "Miraculous!"

Henry Kautz
In Canadian Artificial Intelligence, September 1986
(then: University of Rochester
then: head of AI at ATET Labs-Research
and Program co-chair of AAAI-2000
Now: Associate Professor at University of Washington, Seattle)

