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< | Outline
e Categorization of search techniques
e Ordered search (search with an evaluation function)
e Best-first search:
(1) Greedy search (2) A*
[\
e Admissible heuristic functions:
how to compare them?
how to generate them?
. how to combine them?
gg e [terative improvement search:
g5 (1) Hill-climbing (2) Simulated annealing
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Types of Search (I)

1- Uninformed vs. informed

2- Systematic/constructive vs. iterative improvement

Uninformed :
use only information available in problem definition,

no idea about distance to goal

— can be incredibly ineffective in practice

Heuristic :
exploits some knowledge of the domain
also useful for solving optimization problems
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Types of Search (II)

Systematic, exhaustive, constructive search:

a partial solution is incrementally extended into global solution

Partial solution =
sequence of transitions between states

Global solution =
Solution from the initial state to the goal state

Uninf d
Examples: rorme

Informed (heuristic): Greedy search, A*

— Returns the path; solution = path

- /
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Types of Search (III)

Iterative improvement:
A state is gradually modified and evaluated until
reaching an (acceptable) optimum

— We don’t care about the path, we care about ‘quality’ of state
— Returns a state; a solution = good quality state

— Necessarily an informed search

Hill climbing
Examples (informed):{ Simulated Annealing (physics), Taboo search

Genetic algorithms (biology)

- /
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Ordered search

e Strategies for systematic search are generated by choosing which
node from the fringe to expand first

e The node to expand is chosen by an evaluation function,

expressing ‘desirability’ — ordered search

e When nodes in queue are sorted according to their decreasing
values by the evaluation function — best-first search

e Warning: ‘best’ is actually ‘seemingly-best’ given the evaluation
function. Not always best (otherwise, we could march directly to
the goal!)

- /
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Search using an evaluation function

e Example: uniform-cost search!
What is the evaluation function?

Evaluates cost from ............. 170 JUTUURUTRRN ?

e How about the cost to the goal?

h(n) = estimated cost of the cheapest
path from the state at node n to a goal state

h(n) would help focusing search

\_
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Cost to the goal

This information is not part of the problem description

Arad 366 M ehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Ur ziceni 80
las 226 Vadui 199
Lugoj 244 Zerind 374
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Best-first search

1. Greedy search chooses the node n closest to the goal

such as h(n) is minimal

2. A* search chooses the least-cost solution
g(n): cost from root to a given node n
solution cost f(n) < +

h(n): cost from the node n to the goal node

such as f(n) = g(n) + h(n) is minimal

- /
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Greedy search

— First expand the node whose state is ‘closest’ to the goal!

— Minimize h(n)

function BESFRIRST-SEARCH( problem, EVAL -FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing-Fn «+ a function that orders nodes byt -FN
return GENERAL-SEARCH( problem, Queueing-Fn)

— Usually, cost of reaching a goal may be estimated,
not determined exactly

— If state at n is goal, h(n)= ?

— How to choose h(n)? Problem specific! Heuristic!

- /
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Greedy search: Romania

hsip(n) = straight-line distance between n and goal location
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(b) After expanding Arad
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Greedy search: Problems

. False starts: Neamt is a dead-end
From Iasi to Fagaras?

Looping
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Greedy search: Properties
— Like depth-first, tends to follow a single path to the goal
. Not complete
— | — Like depth-first
e~ Not optimal
— Time complexity: O(b™), m maximum depth
— Space complexity: O(b"™) retains all nodes in memory
. — Good h function (considerably) reduces space and time
ok but h functions are problem dependent :—(
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Hmm...

Greedy search minimizes estimated cost to goal h(n)
— cuts search cost considerably
— but not optimal, not complete

— | Uniform-cost search minimizes cost of the path so far g(n)
— is optimal and complete
— but can be wasteful of resources
New-Best-First search minimizes f(n) = g(n) + h(n)
= — combines greedy and uniform-cost searches
°F f(n) = estimated cost of cheapest solution via n
£ 5 — Provably: complete and optimal, if h(n) is admissible
<z
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| A* Search
e A" search
Best-first search expanding the node in the fringe with minimal
f(n) = g(n) + h(n)
= e A* search with admissible h(n)
Provably complete, optimal, and optimally efficient using
TREE-SEARCH
e A* search with consistent h(n)
= Remains optimal even using GRAPH-SEARCH
4
: : (See TREE-SEARCH page 72 and GRAPH-SEARCH page 83)
i\ /
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An admissible heuristic is a heuristic that never overestimates the

cost to reach the goal
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/Px* Search From Arad to Bucharest \

(a) Theinitial state >
366=0+366
(b) After expanding Arad Carad >
> Sibiu> Timisoaid Czerind>

393=140+253

447=118+329

449=75+374

(c) After expanding Sibiu

447=118+329 449=75+374

646=280+366415=239+176 671=291+380413=220+193

(d) After expanding Rimnicu Vilcea

R

447=118+329 449=75+374
646=280+366 415=239+176 671=291+380

526=366+160417=317+100 553=300+253

(e) After expanding Fagaras

o>

447=118+329 449=75+374
646=280+366

591=338+253 450=450+0  526=366+160417=317+100553=300+253

(f) After expanding Pitesti

449=75+374

\\ 418=418+0 615=455+160 607=414+193 /

B.Y. Choueiry 18

Instructor’s notes #7
February 2, 2009




Laronoyp X

A* Search is optimal

G, Gy goal states = ¢(G) = f(G), f(Gz2) = g(G2) h(G) = h(Ga) = 0
G optimal goal state = C* = f(G)
G2 suboptimal = f(G2) > C* = f(G) (1)

Suppose n is not chosen for expansion

© BN
Nej
c@ .ﬁ%
h admissible = C* > f(n) (2)
2 | Since n was not chosen for expansion = f(n) > f(G>) (3)
e
2| 2+ B)=0C"=[f(G) (4)
‘;5 (1) and (4) are contradictory = n should be chosen for expansion
w
¢ ([ Which nodes does A* expand?
5| GoOAL-TEST is applied to STATE(node) when a node is
chosen from the fringe for expansion, not when the node is
generated
Theorem 3 & 4 in Pearl 84, original results by Nilsson
e Necessary condition: Any node expanded by A* cannot have an
o f value exceeding C*: For all nodes expanded, f(n) < C*
e Sufficient condition: Every node in the fringe for f(n) < C*
will eventually be expanded by A*
_ In summary
°F e A* expands all nodes with f(n) < C*
g’ 5 e A* expands some nodes with f(n) = C*
gi \o A* expands no nodes with f(n) > C* /
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Expanding contours

A* expands nodes from fringe in increasing f value
We can conceptually draw contours in the search space

[\
—
E’ = The first solution found is necessarily the optimal solution
zéf Careful: a TEST-GOAL is applied at node expansion
Sk \ /
w
<
. N
) A* Search is complete
Since A* search expands all nodes with f(n) < C*, it must
eventually reach the goal state unless there are infinitely many
1. 3 a node with infinite branching factor
b2 | nodes f(n) < C*{ or
2. J a path with infinite number of nodes along it
on locally finite graphs
? | A*is complete if { and
Z5 36 > 0 constant, the cost of each operator > o
NG /
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A* Search Complexity

Time:
Exponential in (relative error in h X length of solution path)

... quite bad

Space: must keep all nodes in memory

Y Number of nodes within goal contour is exponential in length
of solution.... unless the error in the heuristic function
|h(n) — h*(n)| grows no faster than the log of the actual path
cost: |h(n) — h*(n)] < O(logh*(n))
_ In practice, the error is proportional... impractical..
gé’ major drawback of A*: runs out of space quickly
To% — Memory Bounded Search IDA*(not addressed here)
5\ %
w
<
. N
:
¢
A* Search is optimally efficient
.. for any given evaluation function: no other algorithms that finds
b the optimal solution is guaranteed to expend fewer nodes than A*
Interpretation (proof not presented): Any algorithm that does not
expand all nodes between root and the goal contour risks missing
. the optimal solution
:;
A\ /
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Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it,
GRAPH-SEARCH checks whether STATE(node) was visited before to

avoid loops.

— (GRAPH-SEARCH may lose optimal solution

~

[\
ot
Solutions
1. In Graph-Search, discard the more expensive path to a node
Z 2. Ensure that the optimal path to any repeated state is the first
?i; one found
g’ 5 — Consistency
AN /
w
< / \
Q .
¢ [ Consistency
s
4 h(n) is consistent
If V n and V n’ successor of n along a path, we have
h(n) < k(n,n’) + h(n'), k cost of cheapest path from n to n’
Monotonicity
% | h(n) is monotone
If Vn and V n/ successor of n generated by action a, we have
h(n) <c¢(n,a,n’) + h(n'), n’ is an immediate successor of n
Triangle inequality ((n,n’, goal))
= | Important: h is consistent < h is monotone
§7 5 Beware: of confusing terminology ‘consistent’ and ‘monotone’
- s \ Values of h not necessarily decreasing/nonincreasing /
S
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Properties of h: Important results

~

e h consistent < h monotone (Pearl 84)
e h consistent = h admissible (AIMA, Exercise 4.7)
[\
~ consistency is stricter than admissibility
e h consistent = f is nondecreasing
f(n') =g(n')+h(n') = g(n)+c(n,a,n’)+h(n) = g(n)+h(n) = f(n)
g§ e h consistent = A* using GRAPH-SEARCH is optimally efficient
95
A /
w
<
2 ([ N
é. Pathmax equation You may ignore this slide
g
Monotonicity of f: values along a path are nondecreasing
When f is not monotonic, use pathmax equation
f(n') = max(f(n),g(n') + h(n))
A* never decreases along any path out from root
[\
*© o) = 3
h(n=4 O n
HEE
. Pathmax
gé e guarantees f nondecreasing
;E’f e does not guarantee h consistent
i§ e does not guarantee A* + GRAPH-SEARCH is optimally efficient
2L\
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Summarizing definitions for A*

e A* is a best-first search that expands the node in the fringe
with minimal f(n) = g(n) + h(n)

~

e An admissible function h never overestimates the distance to
the goal.
[\~
© e h admissible = A* is complete, optimal, optimally efficient
using TREE-SEARCH
e h consistent < h monotone
h consistent = h admissible
2 h consistent = f nondecreasing
2z
£ 5 e h consistent = A* remains optimal using GRAPH-SEARCH
<
5\ %
w
<
¢ | Admissible heuristic functions
<
Examples
e Route-finding problems: straight-line distance
hi(n) = number of misplaced tiles
e 8-puzzle:
ha(n) = total Manhattan distance
o
S
o]
BpHE
5 Start State Goal State
gét h1 (S) =7
ié ho(S) =7
A\ /
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Performance of admissible heuristic functions

Two criteria to compare admissible heuristic functions:
1. Effective branching factor: b*

2. Dominance: number of nodes expanded

\_
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Effective branching factor v*

— The heuristic expands N nodes in total

— The solution depth is d

— b* is the branching factor had the tree been uniform

i (b*)d+1 -1

N=1+b"+ ") +...+ (b e

— Example: N=52, d=5 — b* = 1.92

\_
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If ho(n) > hq(n) for all n (both admissible)
then ho dominates hy and is better for search

Typical search costs: nodes expanded

Sol. depth IDS A*(h1) A%(h2)
d=12 3,644,035 227 73
d=24 too many 39,135 1,641

A* expands all nodes f(n) < C* = g(n) + h(n) < C*
=h(n) < C* —g(n)
If hy < hg, A* with h; will always expand at least as many (if not

more) nodes than A* with ho

— It is always better to use a heuristic function with
higher values, as long as it does not overestimate (remains

\ admissible) /
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How to generate admissible heuristics?

— Use ezact solution cost of a relaxed (easier) problem

Steps:

— Consider problem P

— Take a problem P’ easier than P
— Find solution to P’

— Use solution of P’ as a heuristic for P

- /
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/Relaxing the 8-puzzle problem \

A tile can move mode square A to square B if
A is (horizontally or vertically) adjacent to B and B is blank

1. A tile can move from square A to square B if A is adjacent to B
The rules are relaxed so that a tile can move to any adjacent

square: the shortest solution can be used as a heuristic

o
ot
(= ha(n))
2. A tile can move from square A to square B if B is blank
Gaschnig heuristic (Exercice 4.9, AIMA, page 135)
9 3. A tile can move from square A to square B
5 The rules of the 8-puzzle are relaxed so that a tile can move
E - anywhere: the shortest solution can be used as a heuristic
3 (= ha(n))
g% \ /
w
<
:
¢
An admissible heuristic for the TSP
w
< | Let path be any structure that connects all cities
—> minimum spanning tree heuristic (polynomial)
(Exercice 4.8, AIMA, page 135)
:;
NG /
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Combining several admissible heuristic functions

We have a set of admissible heuristics hi, ho, b3, ..., h,, but no

heuristic that dominates all others, what to do?
— h(n) = max(hi(n),ha(n),..., hy(n))
h is admissible and dominates all others.

— Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)

- /
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/[J sing subproblems to derive an admissible heuristic function\

Goal: get 1, 2, 3, 4 into their correct positions, ignoring the
‘identity’ of the other tiles

a
aa a
a aan

Start State Goal State

Cost of optimal solution to subproblem used as a lower bound
(and is substantially more accurate than Manhattan distance)

Pattern databases:
e Identify patterns (which represent several possible states)
e Store cost of exact solutions of patterns

e During search, retrieve cost of pattern and use as a (tight)

estimate

Qost of building the database is amortized over ‘time’ /
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Iterative improvement (ak.a. local search)

— Sometimes, the ‘path’ to the goal is irrelevant
only the state description (or its quality) is needed

Iterative improvement search
e choose a single current state, sub-optimal
e gradually modify current state
e generally visiting ‘neighbors’
e until reaching a near-optimal state

Example: complete-state formulation of N-queens

- /
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Main advantages of local search techniques

1. Memory (usually a constant amount)

2. Find reasonable solutions in large spaces

where we cannot possibly search the space exhaustively

3. Useful for optimization problems:

best state given an objective function (quality of the goal)




w
< / \
s Intuition: state-scape landscape
g evaluation
N
—_
e All states are layed up on the surface of a landscape
e A state’s location determines its neighbors (where it can move)
Z e A state’s elevation represents its quality (value of objective
4] function)
)
5 : e Move from one neighbor of the current state to another state
Igi \ until reaching the highest peak /
w
<
= L
¢ | Two major classes
1. Hill climbing (a.k.a. gradient ascent/descent)
— try to make changes to improve quality of current state
2. Simulated Annealing (physics)
— things can temporarily get worse
S
[\
Others: tabu search, local beam search, genetic algorithms, etc.
— Optimality (soundness)? Completeness?
3 — Complexity: space? time?
E’ 5 — In practice, surprisingly good.. (eroding myth)
AN /
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Hill climbing

Start from any state at random and loop:
Examine all direct neighbors

If a neighbor has higher value then move to it else exit

evaluation objective function .
_— global maximum

shoulder

local maximum

current
dtate

current
state

Local optima: (maxima or minima) search halts

Problems: Plateau: flat local optimum or shoulder

Ridge

“flat” local maximum

state space

/
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Plateaux

Allow sideway moves

objective function .
/global maximum

shoulder

local maximum
“flat” local maximum

state space

current
state

e For shoulder, good solution

e For flat local optima, may result in an infinite loop

Limit number of moves

\_

~
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Ridges

Sequence of local optima that is difficult to navigate

N
ot
::
AN /
w
<
:
Variants of Hill Climbing
e Stochastic hill climbing: random walk
Choose to disobey the heuristic, sometimes
. Parameter: How often?
(@}
e First-choice hill climbing
Choose first best neighbor examined
Good solution when we have too many neighbors
= e Random-restart hill climbing
g; A series of hill-climbing searches from random initial states
e
AN /
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Random-restart hill-climbing

— When HC halts or no progress is made
re-start from a different (randomly chosen) starting

save best results found so far

N

\]

— Repeat random restart
- for a fixed number of iterations, or
- until best results have not been improved for a certain

: number of iterations
jopp=
2
NG /

v

= / \

¢ ( Simulated annealing (I)

e

g Basic idea: When stuck in a local maximum allow few steps

towards less good neighbors to escape the local maximum
Start from any state at random, start count down and loop
until time is over:
Pick up a neighbor at random
. Set AE = value(neighbor) - value(current state)
@ If AE>0 (neighbor is better)
then move to neighbor
else AE<0 move to it with probability < 1

z o . AE is negative
3 Transition probability ~ e®E/T 5
2 T: count-down time
£ =, . .
5 as time passes, less and less likely to make the move towards
o8 \‘unattractive’ neighbors /
S




617 Laronoyp X

600t ‘z Lreniqoq
L7£ so30U §,1030NI3SUT

4 N

Simulated annealing (II)

Analogy to physics:
Gradually cooling a liquid until it freezes
If temperature is lowered sufficiently slowly, material
will attain lowest-energy configuration (perfect order)

Count down +«— Temperature

Moves between states <«+—  Thermal noise

Global optimum «+— Lowest-energy configuration

- /
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How about decision problems?

Optimization problems Decision problems
Iterative improvement <«+—  Iterative repair
State value «+— Number of constraints violated
Sub-optimal state +«— Inconsistent state

Optimal state <«—  Consistent state
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Local beam search

o Keeps track of k£ states

e Mechanism:

600¢ ‘z Lreniqoyq
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o Begins with k states
At each step, all successors of all k states generated
Goal reached? Stop.
Otherwise, selects k best successors, and repeat.
o e Not exactly a k restarts: k£ runs are not independent
§§, e Stochastic beam search increases diversity
£ =,
2\ /
w
<
¢ | Genetic algorithms
e Basic concept: combines two (parent) states
e Mechanism:
Starts with k& random states (population)
Encodes individuals in a compact representation (e.g., a string
- in an alphabet)
[\

Combines partial solutions to generate new solutions (next

generation)
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mportant components of a genetic algorithm

24 a1% | 32752411 | 32748552 || 3274852 |
23 200 | 24748552 l|: :| 24752411 || 24752411 |
20 26% | 32752411 32752124 |—{ 32pb2124]
1 140 | 24415124 [ 24415411

(@) (b) (© (d) (e)

Initial Population  Fitness Function Selection Crossover Mutation

e Fitness function ranks a state’s quality, assigns probability for

selection

e Selection randomly chooses pairs for combinations depending

on fitness

e Crossover point randomly chosen for each individual, offsprings

are generated

\o Mutation randomly changes a state /




