Title: Adverserial Search
AIMA: Chapter 6 (Sections 6.1, 6.2 and 6.3)

Introduction to Artificial Intelligence CSCE 476-876, Spring 2009 URL: www.cse.unl.edu/~choueiry/S09-476-876

Berthe Y. Choueiry (Shu-we-ri) choueiry@cse.unl.edu, (402)472-5444

Outline

- Introduction
- Minimax algorithm
- Alpha-beta pruning

Context

- In an MAS, agents affect each other's welfare
- Environment can be cooperative or competitive
- Competitive environments yield adverserial search problems (games)
- Approaches: mathematical game theory and AI games

Game theory vs. AI

- AI games: fully observable, deterministic environments, players alternate, utility values are equal (draw) or opposite (winner/loser)
In vocabulary of game theory: deterministic, turn-taking,
$\perp \quad$ two-player, zero-sum games of perfect information
- Games are attractive to AI: states simple to represent, agents restricted to a small number of actions, outcome defined by simple rules
Not croquet or ice hockey, but typically board games Exception: Soccer (Robocup www.robocup.org/)

Board game playing: an appealing target of AI research

Board game: Chess (since early AI), Othello, Go, Backgammon, etc.
cr - Easy to represent

- Fairly small numbers of well-defined actions
- Environment fairly accessible
- Good abstraction of an enemy, w/o real-life (or war) risks :-)

But also: Bridge, ping-pong, etc.

Characteristics

- 'Unpredictable' opponent: contingency problem (interleaves search and execution)
- Not the usual type of 'uncertainty':
no randomness/no missing information (such as in traffic) but, the moves of the opponent expectedly non benign
- Challenges:
- huge branching factor
- large solution space
- Computing optimal solution is infeasible
- Yet, decisions must be made. Forget A*...

Discussion

- What are the theoretically best moves?
- Techniques for choosing a good move when time is tight $\sqrt{ }$ Pruning: ignore irrelevant portions of the search space \times Evaluation function: approximate the true utility of a state without doing search

Two-person Games

- 2 player: Min and Max
- Max moves first
- Players alternate until end of game
- Gain awarded to player/penalty give to loser

Game as a search problem:

- Initial state: board position \& indication whose turn it is
- Successor function: defining legal moves a player can take Returns \{(move, state)* $\}$
- Terminal test: determining when game is over states satisfy the test: terminal states
- Utility function (a.k.a. payoff function): numerical value for outcome e.g., Chess: win $=1$, loss $=-1$, draw $=0$

Usual search

Max finds a sequence of operators yielding a terminal goal scoring winner according to the utility function

Game search

- Min actions are significant

Max must find a strategy to win regardless of what Min does: \longrightarrow correct action for Max for each action of Min

- Need to approximate (no time to envisage all possibilities difficulty): a huge state space, an even more huge search space e.g., chess: $\left\{\begin{array}{l}10^{40} \text { different legal positions } \\ \text { Average branching factor }=35,50 \text { moves } / \text { player }=35^{100}\end{array}\right.$
- Performance in terms of time is very important

Example: Tic-Tac-Toe

Max has 9 alternative moves
Terminal states' utility: Max wins=1, Max loses $=-1$, Draw $=0$

Example: 2-ply game tree

Max's actions: $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$
Min's actions: $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$

Minimax algorithm determines the optimal strategy for Max
\rightarrow decides which is the best move

Minimax algorithm

- Generate the whole tree, down to the leaves
- Compute utility of each terminal state
- Iteratively, from the leaves up to the root, use utility of nodes at depth d to compute utility of nodes at depth $(d-1)$:

MIN 'row': minimum of children
MAX 'row': maximum of children
Minimax-Value (n)
$\begin{cases}\operatorname{Utility}(\mathrm{n}) & \text { if } n \text { is a terminal node } \\ \max _{s \in \operatorname{Succ}(n)} \operatorname{Minimax}-\operatorname{Value}(s) & \text { if } n \text { is a Max node } \\ \min _{s \in \operatorname{Succ}(n)} \operatorname{Minimax}-\operatorname{Value}(s) & \text { if } n \text { is a Min node }\end{cases}$

Minimax decision

- MAX's decision: minimax decision maximizes utility under the assumption that the opponent will play perfectly to his/her own advantage
- Minimax decision maximes the worst-case outcome for Max (which otherwise is guaranteed to do better)
- If opponent is sub-optimal, other strategies may reach better outcome better than the minimax decision outcone better than the minat deision

Multiple players games

$\operatorname{Utility}(n)$ becomes a vector of the size of the number of players

For each node，the vector gives the utility of the state for each

$$
\stackrel{\bullet}{\circ}
$$ player

to move

A

B

C

A
－

Alliance formation in multiple players games

How about alliances？
－ A and B in weak positions，but C in strong position
A and B make an alliance to attack C（rather than each other \rightarrow Collaboration emerges from purely selfish behavior！
－Alliances can be done and undone（careful for social stigma！）
－When a two－player game is not zero－sum，players may end up automatically making alliances（for example when the terminal state maximizes utility of both players）

Alpha-beta pruning

- Minimax requires computing all terminal nodes: unacceptable
- Do we really need to do compute utility of all terminal nodes?
... No, says John McCarthy in 1956:

It is possible to compute the correct minimax decision without looking at every node in the tree, and yet get the correct decision

- Use pruning (eliminating useless branches in a tree)

Example of alpha-beta pruning

(c)

(d)

(e)

(f)

Try 14, 5, 2, 6 below D

Mechanism of Alpha-beta pruning
α : value of best choice so far for MAX, (maximum)
β : value of best choice so far for MIN, (minimum)

Alpha-beta search:

- updates the value of α, β as it goes along
- prunes a subtree as soon as its worse then current α or β

$\stackrel{\leftrightarrow}{\kappa}$ Effectiveness of pruning

Effectiveness of pruning depends on the order of new nodes examined

(d)

(e)

(f)

Savings in terms of cost

- Ideal case:

Alpha-beta examines $O\left(b^{d / 2}\right)$ nodes (vs. Minimax: $O\left(b^{d}\right)$)
\rightarrow Effective branching factor \sqrt{b} (vs. Minimax: b)

- Successors ordered randomly:
$b>1000$, asymptotic complexity is $O\left((b / \log b)^{d}\right)$
b reasonable, asymptotic complexity is $O\left(b^{3 d / 4}\right)$
- Practically: Fairly simple heuristics work (fairly) well

