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Outline

• Introdution

• Minimax algorithm

• Alpha-beta pruning
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Context

• In an MAS, agents a�et eah other's welfare

• Environment an be ooperative or ompetitive

• Competitive environments yield adverserial searh problems(games)

• Approahes: mathematial game theory and AI games
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Game theory vs. AI

• AI games: fully observable, deterministi environments, playersalternate, utility values are equal (draw) or opposite(winner/loser)In voabulary of game theory: deterministi, turn-taking,two-player, zero-sum games of perfet information

• Games are attrative to AI: states simple to represent, agentsrestrited to a small number of ations, outome de�ned bysimple rulesNot roquet or ie hokey, but typially board gamesExeption: Soer (Roboup www.roboup.org/)
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Board game playing: an appealing target of AI researh
Board game: Chess (sine early AI), Othello, Go, Bakgammon,et.
- Easy to represent- Fairly small numbers of well-de�ned ations- Environment fairly aessible- Good abstration of an enemy, w/o real-life (or war) risks :�)
But also: Bridge, ping-pong, et.
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Charateristis

• Ùnpreditable' opponent: ontingeny problem(interleaves searh and exeution)

• Not the usual type of ùnertainty':no randomness/no missing information (suh as in tra�)but, the moves of the opponent expetedly non benign

• Challenges:- huge branhing fator- large solution spae- Computing optimal solution is infeasible- Yet, deisions must be made. Forget A*...
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Disussion

• What are the theoretially best moves?

• Tehniques for hoosing a good move when time is tight

√ Pruning: ignore irrelevant portions of the searh spae

× Evaluation funtion: approximate the true utility of a statewithout doing searh
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Two-person Games- 2 player: Min and Max- Max moves �rst- Players alternate until end of game- Gain awarded to player/penalty give to loser
Game as a searh problem:

• Initial state: board position & indiation whose turn it is

• Suessor funtion: de�ning legal moves a player an takeReturns {(move, state)∗}

• Terminal test: determining when game is overstates satisfy the test: terminal states

• Utility funtion (a.k.a. payo� funtion): numerial value foroutome e.g., Chess: win=1, loss=-1, draw=0
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Usual searhMax �nds a sequene of operators yielding a terminal goal soringwinner aording to the utility funtion
Game searh

• Min ations are signi�antMax must �nd a strategy to win regardless of what Min does:

−→ orret ation for Max for eah ation of Min

• Need to approximate (no time to envisage all possibilitiesdi�ulty): a huge state spae, an even more huge searh spaee.g., hess: 8

<

:

1040 di�erent legal positionsAverage branhing fator=35, 50 moves/player= 35100

• Performane in terms of time is very important
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Example: Ti-Ta-ToeMax has 9 alternative movesTerminal states' utility: Max wins=1, Max loses = -1, Draw = 0
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Example: 2-ply game tree
Max's ations: a1, a2, a3Min's ations: b1, b2, b3

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1
b2

b3


c1
c2

c3 d1
d2

d3

MIN

Minimax algorithm determines the optimal strategy for Max

→ deides whih is the best move
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Minimax algorithm- Generate the whole tree, down to the leaves- Compute utility of eah terminal state- Iteratively, from the leaves up to the root, use utility of nodes atdepth d to ompute utility of nodes at depth (d − 1):MIN r̀ow': minimum of hildrenMAX r̀ow': maximum of hildrenMinimax-Value (n)

8

>

>

<

>

>

:

Utility(n) if n is a terminal node

maxs∈Succ(n)Minimax-Value(s) if n is a Max node

mins∈Succ(n)Minimax-Value(s) if n is a Min node
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Minimax deision

• MAX's deision: minimax deision maximizes utility under theassumption that the opponent will play perfetly to his/herown advantage

• Minimax deision maximes the worst-ase outome for Max(whih otherwise is guaranteed to do better)

• If opponent is sub-optimal, other strategies may reah betteroutome better than the minimax deision
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Minimax algorithm: Properties

• m maximum depth

b legal moves

• Using Depth-�rst searh, spae requirement is:

O(bm): if generating all suessors at one

O(m): if onsidering suessors one at a time

• Time omplexity O(bm)Real games: time ost totally unaeptable
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Multiple players games
Utility(n) beomes a vetor of the size of the number of players
For eah node, the vetor gives the utility of the state for eahplayer

to move
A

B

C

A
(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,�1) (5,�1,�1) (1, 5, 2) (7, 7,�1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X
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Alliane formation in multiple players games
How about allianes?

• A and B in weak positions, but C in strong positionA and B make an alliane to attak C (rather than eah other

→ Collaboration emerges from purely sel�sh behavior!

• Allianes an be done and undone (areful for soial stigma!)

• When a two-player game is not zero-sum, players may end upautomatially making allianes (for example when the terminalstate maximizes utility of both players)
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Alpha-beta pruning

• Minimax requires omputing all terminal nodes: unaeptable

• Do we really need to do ompute utility of all terminal nodes?... No, says John MCarthy in 1956:
It is possible to ompute the orret minimax deision withoutlooking at every node in the tree, and yet get the orretdeision

• Use pruning (eliminating useless branhes in a tree)
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Example of alpha-beta pruning

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Try 14, 5, 2, 6 below D
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General prinipal of Alpha-beta pruning
If Player has a better hoie m at 8

<

:

� a parent node of n� any hoie point further up

n will never be reahed in atual play

Player

Opponent

Player

Opponent

..

..

..

m

nOne we have found enough about n (e.g., through one of itdesendants), we an prune it (i.e., disard all its remainingdesendants)
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Mehanism of Alpha-beta pruning

α: value of best hoie so far for MAX, (maximum)

β: value of best hoie so far for MIN, (minimum)

Player

Opponent

Player

Opponent

..

..

..

m

nAlpha-beta searh:- updates the value of α, β as it goes along- prunes a subtree as soon as its worse then urrent α or β
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E�etiveness of pruning
E�etiveness of pruning depends on the order of new nodesexamined

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]
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Savings in terms of ost

• Ideal ase:Alpha-beta examines O(bd/2) nodes (vs. Minimax: O(bd))

→ E�etive branhing fator √b (vs. Minimax: b)

• Suessors ordered randomly:

b > 1000, asymptoti omplexity is O((b/ log b)d)

b reasonable, asymptoti omplexity is O(b3d/4)

• Pratially: Fairly simple heuristis work (fairly) well
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