Symmetries in CSP

Elena Sherman
UNL, CSE
April 18, 2009

Table of contents

Why Symmetry?

Symmetry Examples

Approaches for Symmetrical CSPs
Adding symmetry-breaking global contraints
Search space modification Heuristics modification

Historical Note

Contents

Why Symmetry?

Symmetry Examples

Approaches for Symmetrical CSPs
Adding symmetry-breaking global contraints Search space modification Heuristics modification

Historical Note

What is Symmetry?

Symmetry

- Defined as "patterned self-similarity".
- Generated by a transformation \mathcal{S} of an object O_{1} into O_{2}.
- $\mathcal{S}\left(O_{1}\right)$ is not distinguishable from O_{2}.
- Common \mathcal{S} are translation, rotation and reflection.

Crafting a Paper Snowflake

How to cut out a snowflake from a piece of paper?

Crafting a Paper Snowflake

How to cut out a snowflake from a piece of paper?

Crafting a Paper Snowflake

How to cut out a snowflake from a piece of paper? In general biological science problems have many geometric symmetries.

Why is Symmetry?

- $\mathrm{CSP}=(V, D, C) \in N P C$, but \exists islands of tractability.
- Using the structure of CSP to reduce complexity, or to reduce the problem size.
- Symmetry can occur in V, D and C ex. All-Diff constraint.
- CSP's elements that are symmetric under \mathcal{S} create an equivalence class.
- Property detected in one element of an equivalent class can be generalized to all elements of that class. Ex.
$D=\{1,2,3,4,5,6,7\} \Rightarrow D=\{[2,4,6],[3,5,7]\}$.

Contents

Why Symmetry？

Symmetry Examples

Approaches for Symmetrical CSPs
Adding symmetry－breaking global contraints Search space modification Heuristics modification

Historical Note

5-queens Symmetry Example $\mathcal{S}=180$ Rotation

x_{1}	1	2	3	4	5
x_{2}	1	2	3	4	5
	x_{3}	1	2	3	4
5					
	x_{4}	1	2	3	4
5	x_{5}	1	2	3	4
			5		

5-queens Symmetry Example $\mathcal{S}=180$ Rotation

x_{1}	1	2	3	4	5
	1	2	3	4	5
	x_{3}	1	2	3	4
5	180				
x_{4}	1	2	3	4	5
	x_{5}	1	2	3	4

- Rotate by 180 degrees.

5-queens Symmetry Example $\mathcal{S}=180$ Rotation

x_{1}	1	2	3	4	5
x_{2}	1	2	3	4	5
	x_{3}	1	2	3	4
5					
x_{4}	1	2	3	4	5
	x_{5}	1	2	3	4

	x_{5}	5	4	3	2
	1				
x_{4}	5	4	3	2	1
x_{3}	5	4	3	2	1
x_{2}	5	4	3	2	1
	5	5	4	3	2

- Rotate by 180 degrees.

5-queens Symmetry Example $\mathcal{S}=180$ Rotation

x_{1}	1	2	3	4	5
x_{2}	1	2	3	4	5
x_{3}	1	2	3	4	5
${ }^{x} 4$	1	2	3	4	5
x_{5}	1	2	3	4	5

	5	4	3	2	1
	x_{3}	5	4	3	2
	5	4	3	2	1
		5	4	3	2

- Rotate by 180 degrees.
- x_{1} exchanges with x_{5} and x_{2} with x_{4}.
- New domains $\theta(v a l)=6-v a l$ for each x_{i}.
- Equivalence classes:
- Variables $\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{4}\right\}$ and $\left\{x_{3}\right\}$.
- Values $\{1,5\},\{2,4\},\{3\}$.

5-queens Symmetry Example $\mathcal{S}=180$ Rotation

x_{1}	1	2	3	4	5
x_{2}	1	2	3	4	5
	x_{3}	1	2	3	4
5					
x_{4}	1	2	3	4	5
	x_{5}	1	2	3	4

	5	4	3	2	1
	5	x_{3}	5	4	3

- Rotate by 180 degrees.
- x_{1} exchanges with x_{5} and x_{2} with x_{4}.
- New domains $\theta(v a l)=6-v a l$ for each x_{i}.
- Equivalence classes:
- Variables $\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{4}\right\}$ and $\left\{x_{3}\right\}$.
- Values $\{1,5\},\{2,4\},\{3\}$.
- Reflection about the horizontal axis and vertical axis.

5-queens Symmetry Example $\mathcal{S}=180$ Rotation

x_{1}	1	2	3	4	5
x_{2}	1	2	3	4	5
x_{3}	1	2	3	4	5
${ }^{x} 4$	1	2	3	4	5
x_{5}	1	2	3	4	5

	5	4	3	2	1
	5	x_{3}	5	4	3

- Rotate by 180 degrees.
- x_{1} exchanges with x_{5} and x_{2} with x_{4}.
- New domains $\theta(v a l)=6-v a l$ for each x_{i}.
- Equivalence classes:
- Variables $\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{4}\right\}$ and $\left\{x_{3}\right\}$.
- Values $\{1,5\},\{2,4\},\{3\}$.
- Reflection about the horizontal axis and vertical axis.
- Rotation by 360 ? Rotation by 90 ?

5-queens - Different Formulation

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
- $D=\{1,2, \ldots, 25\}$
- What are the symmetries here? Do they include domains, variables or both?

5-queens - Different Formulation

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

1	2	11	16	21
6	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25

- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
- $D=\{1,2, \ldots, 25\}$
- What are the symmetries here? Do they include domains, variables or both?

5-queens - Different Formulation

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	12	18	19	20
21	22	23	24	25

- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
- $D=\{1,2, \ldots, 25\}$
- What are the symmetries here? Do they include domains, variables or both?

5-queens - Different Formulation

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
- $D=\{1,2, \ldots, 25\}$
- What are the symmetries here? Do they include domains, variables or both?

5-queens - Different Formulation

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
- $D=\{1,2, \ldots, 25\}$
- What are the symmetries here? Do they include domains, variables or both?

5-queens - Different Formulation

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
- $D=\{1,2, \ldots, 25\}$
- What are the symmetries here? Do they include domains, variables or both?
- All 8 symmetries.

Formulation of CSP has Symmetry and not the Problem

- The definition of the symmetry applies to the definition of CSP and not to the problem itself.
- Different CSP's formulations of the same problem can have different symmetries.
- What symmetry to select?

Formulation of CSP has Symmetry and not the Problem

- The definition of the symmetry applies to the definition of CSP and not to the problem itself.
- Different CSP's formulations of the same problem can have different symmetries.
- What symmetry to select? What about one that produces the smallest number of equivalent classes?

Contents

Why Symmetry？

Symmetry Examples

Approaches for Symmetrical CSPs

Adding symmetry－breaking global contraints
Search space modification
Heuristics modification

Historical Note

Three Approaches for Symmetrical CSPs

Adding symmetry breaking global constraints

- Adding global constraints to convert it to an asymmetrical CSP.

Modify search

- Pruning symmetric states as they appear in search.

Modify search heuristics

- Using symmetry-breaking rules to guide search.

Removing Symmetry from the Problem - Global Symmetry

- Puget [93] while developing PECOS tool.
- Symmetry can cause a combinatorial explosion of the search space.
- Arc-consistency $A C$ is not adapted to symmetrical CSPs. Ex. Pigeon Hole problem.
- In symmetrical CSP a permutation of the variables map one solution onto another solution.
- Removing symmetrical solutions by adding a constraint - if $C \subset C^{\prime}$ then $\operatorname{Sol}\left(P^{\prime}\right) \subset \operatorname{Sol}(P)$ - reduction.
- Add static symmetry breaking constraints - an ordering constraint $x_{1}<x_{2}<\cdots<x_{n}$ - and do AC after that.

Creating a Global Constraint

Example

- $V=\left\{v_{0}, v_{1}, v_{2}\right\}, D=\{0,1,2\}$
- C $: v_{0} \neq v_{1} \wedge v_{1} \neq v_{2} \wedge v_{2} \neq v_{0}$
- How many solutions?

Creating a Global Constraint

Example

- $V=\left\{v_{0}, v_{1}, v_{2}\right\}, D=\{0,1,2\}$
- $C: v_{0} \neq v_{1} \wedge v_{1} \neq v_{2} \wedge v_{2} \neq v_{0}$
- How many solutions?
- Has a symmetry (permutation): $v_{0} \rightarrow v_{1}, v_{1} \rightarrow v_{2}, v_{2} \rightarrow v_{0}$

Creating a Global Constraint

Example

- $V=\left\{v_{0}, v_{1}, v_{2}\right\}, D=\{0,1,2\}$
- C $: v_{0} \neq v_{1} \wedge v_{1} \neq v_{2} \wedge v_{2} \neq v_{0}$
- How many solutions?
- Has a symmetry (permutation): $v_{0} \rightarrow v_{1}, v_{1} \rightarrow v_{2}, v_{2} \rightarrow v_{0}$
- Adding $v_{0}<v_{1}<v_{2}$ - How many solutions?

General Direction

- Enforcing GAC on this global constraint reduces the problem.
- Depending on the decomposition of a problem GAC propagation can be NPC.
- In "other" constraint paper by Law at al. [CP07].
- Proposed SigLex global constraint.
- Its GAC propagation is P.
- But it prunes only some symmetric values in general cases.

Symmetry is Dynamic [Meseguer \& Torras 2001]

- Symmetries holding at the initial states is a global symmetry.

Symmetry is Dynamic [Meseguer \& Torras 2001]

- Symmetries holding at the initial states is a global symmetry.

Symmetry is Dynamic [Meseguer \& Torras 2001]

- Symmetries holding at the initial states is a global symmetry.

Symmetry is Dynamic [Meseguer \& Torras 2001]

- Symmetries holding at the initial states is a global symmetry.

Symmetry is Dynamic [Meseguer \& Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
- After an assignment to v_{i} the global symmetry may break.

Symmetry is Dynamic [Meseguer \& Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
- After an assignment to v_{i} the global symmetry may break.

Symmetry is Dynamic [Meseguer \& Torras 2001]

x_{1}	q	-	-	-	-
x_{2}	-	-			
x_{3}	-		-		
x_{4}	-			-	
x_{5}	-				-

- Symmetries holding at the initial states is a global symmetry.
- After an assignment to v_{i} the global symmetry may break.

Symmetry is Dynamic [Meseguer \& Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
- After an assignment to v_{i} the global symmetry may break.
- Yet, new symmetries can appear in some states.

Symmetry is Dynamic

- Symmetries holding at the initial states is a global symmetry.
- After an v_{i} assignment the global symmetry can break.
- Yet, new symmetries can appear in some states.
- Symmetries can be broken and restored during the search.

Symmetry is Dynamic

- Symmetries holding at the initial states is a global symmetry.
- After an v_{i} assignment the global symmetry can break.
- Yet, new symmetries can appear in some states.
- Symmetries can be broken and restored during the search.

Pruning Symmetric States from Search

Symmetric Variables [Brown et al. 1989]

- Does not select $v v p$ if $v v p$ leads to a redundant partial assignment.
- Determines if a current partial assignment X is equivalent to a smaller assignment under a symmetry group G.
- Has pseudo code of the Backtracking Algorithm with Symmetries.
- Symmetries are given.

Pruning Symmetric States from Search

Symmetric Values [Freuder 1991]

- Only selects one val from equivalence class of values during vvp selection.
- Values a and b are neighborhood interchangeable if each $v v p$ is consistent with their neighborhood.
- Algorithm to determine local value interchangeability is $O\left(n^{2} d^{2}\right)$.
- Symmetries are discovered.

Domain

Symmetric Variables and Values [Backofen \& Will CP99, Gent \& Smith 2000]

- Does not interfere with the heuristic searches (variable ordering).
- Adds symmetry breaking constraints to the right branches of search tree.

$x_{1}=2, x_{2}=3$ - backtracking

Symmetric Variables and Values [Backofen \& Will CP99, Gent \& Smith 2000]

- Does not interfere with the heuristic searches (variable ordering).
- Adds symmetry breaking constraints to the right branches of search tree.

$x_{1}=2, x_{2}=3$ - backtracking
$x_{1}=2, x_{2} \neq 3$ - should we consider $x_{4}=3$?

Symmetric Variables and Values [Backofen \& Will CP99, Gent \& Smith 2000]

- Does not interfere with the heuristic searches (variable ordering).
- Adds symmetry breaking constraints to the right branches of search tree.

$x_{1}=2, x_{2}=3$ - backtracking
$x_{1}=2, x_{2} \neq 3$ - should we consider $x_{4}=3$? Depends if $x_{5}=5$ or not
If $x_{5} \neq 5$ then $x_{2}=3$ and $x_{3}=3$ are not equivalent. Generally it is not known if $x_{5}=5$ or $x_{5} \neq 5$.
Adding a conditional constraint $x_{1}=1 \wedge x_{2} \neq 3 \wedge x_{5}=5 \Rightarrow x_{4} \neq 3$.

Use Symmetry to Guide Search

Dynamic Variable Ordering [Meseguer \& Torras 2001]

- Direct search toward subspaces with many non-symmetric states.
- Selecting vvp that breaks the most of the symmetries.
- It will lead to more evenly distributed solutions in the CSP's state space.
- More about it in my project presentation.

Contents

Why Symmetry?

Symmetry Examples

Approaches for Symmetrical CSPs
Adding symmetry-breaking global contraints Search space modification Heuristics modification

Historical Note

- Avoiding symmetric path in search [Glaischer 1874, Brown et al. 1989]
- Value interchangeability [Freuder 1991]
- Symmetry breaking constraints [Puget 93, Backofen \& Will 99]
- Discovering symmetries
- Equivalent to graph isomorphism.
- Complexity unknown (P? NPC?)
- Discover symmetry generators with Nauty, Saucy, AUTOM

Bibliography I

- Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. Backtrack searching in the presence of symmetry. In AAECC-6: Proceedings of the 6th International Conference, on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 99-110, London, UK, 1989. Springer-Verlag.
囯
Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based search.
In CP '99: Proceedings of the 5th International Conference on Principles and Practice of Constraint Programming, pages 73-87, London, UK, 1999. Springer-Verlag.
國 Darga et al.
Saucy.
http://vlsicad.eecs.umich.edu/BK/SAUCY.

Bibliography II

围 Eugene C．Freuder．
Eliminating interchangeable values in constraint satisfaction problems．
In In Proceedings of AAAI－91，pages 227－233， 1991.
嗇 J．W．L．Glaisher．
On the Problem of the Eight Queens．
Philosophical Magazine，48：457－467， 1874.
直 Ian P．Gent and Barbara M．Smith．
Symmetry breaking in constraint programming．
In Proceedings of ECAI－2000，pages 599－603．IOS Press， 2000.
围 Y．C．Law，J．H．M．Lee，Toby Walsh，and J．Y．K．Yip．
Breaking symmetry of interchangeable variables and values． In Principles and Practice of Constraint Programming CP 2007， pages 423－437，London，UK，2007．Springer－Verlag．

Bibliography III

Brendan MacKay.
Nauty.
http://cs.anu.edu.au/people/bdm/nauty.
Pedro Meseguer and Carme Torras.
Exploiting symmetries within constraint satisfaction search.
Artif. Intell., 129(1-2):133-163, 2001.
周 Jean-Francois Puget.
On the satisfiability of symmetrical constrained satisfaction problems.
In ISMIS '93: Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems, pages 350-361, London, UK, 1993. Springer-Verlag.

囯 Jean-Francois Puget.
Automatic Detection of Variable and Value Symmetries, 2005.

