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1. Background and Importance. 
 
The merging of optimization and simulation technologies has seen a remarkable growth 
in recent years.  A Google search on “Simulation Optimization” returns more than one 
hundred and thirty thousand pages where this phrase appears.  The content of these pages 
ranges from articles, conference presentations and books to software, sponsored work and 
consultancy.  This is an area that has sparked as much interest in the academic world as in 
practical settings.  
 
A principal reason underlying the importance of simulation optimization is that many real 
world problems in optimization are too complex to be given tractable mathematical 
formulations. Multiple nonlinearities, combinatorial relationships and uncertainties often 
render challenging practical problems inaccessible to modeling except by resorting to 
simulation – an outcome that poses grave difficulties for classical optimization methods.  
In such situations, recourse is commonly made to itemizing a series of scenarios in the 
hope that at least one will give an acceptable solution.  Consequently, a long standing 
goal in both the optimization and simulation communities has been to create a way to 
guide a series of simulations to produce high quality solutions, in the absence of tractable 
mathematical structures. 
 Applications include the goals of finding: 

• the best configuration of machines for production scheduling 
• the best integration of manufacturing, inventory and distribution 
• the best layouts, links and capacities for network design 
• the best investment portfolio for financial planning 
• the best utilization of employees for workforce planning 
• the best location of facilities for commercial distribution 
• the best operating schedule for electrical power planning 
• the best assignment of medical personnel in hospital administration 
• the best setting of tolerances in manufacturing design 
• the best set of treatment policies in waste management 

 
and many other objectives. 
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In this paper, we first summarize some of the most relevant approaches that have been 
developed for the purpose of optimizing simulated systems. We then concentrate on the 
metaheuristic black-box approach that leads the field of practical applications and 
provide some relevant details of how this approach has been implemented and used in 
commercial software.  Finally, we present an example of simulation optimization in the 
context of a simulation model developed to predict performance and measure risk in a 
real world project selection problem. 
 
2. Technical Characteristics 
 
The optimization of simulation models deals with the situation in which the analyst 
would like to find which of possibly many sets of model specifications (i.e., input 
parameters and/or structural assumptions) lead to optimal performance.  In the area of 
design of experiments, the input parameters and structural assumptions associated with a 
simulation model are called factors.  The output performance measures are called 
responses.  For instance, a simulation model of a manufacturing facility may include 
factors such as number of machines of each type, machine settings, layout and the 
number of workers for each skill level.  The responses may be cycle time, work-in-
progress and resource utilization. 
 
In the world of optimization, the factors become decision variables and the responses are 
used to model an objective function and constraints.  Whereas the goal of experimental 
design is to find out which factors have the greatest effect on a response, optimization 
seeks the combination of factor levels that minimizes or maximizes a response (subject to 
constraints imposed on factors and/or responses).  Returning to our manufacturing 
example, we may want to formulate an optimization model that seeks to minimize cycle 
time by manipulating the number of workers and machines, while restricting capital 
investment and operational costs as well as maintaining a minimum utilization level of all 
resources.  A model for this optimization problem would consists of decision variables 
associated with labor and machines as well as a performance measure based on a cycle 
time obtained from running the simulation of the manufacturing facility.  The constraints 
are formulated both with decision variables and responses (i.e., utilization of resources). 
 
In the context of simulation optimization, a simulation model can be thought of as a 
“mechanism that turns input parameters into output performance measures” (Law and 
Kelton, 1991).  In other words, the simulation model is a function (whose explicit form is 
unknown) that evaluates the merit of a set of specifications, typically represented as set of 
values.  Viewing a simulation model as a function has motivated a family of approaches 
to optimize simulations based on response surfaces and metamodels. 
 
A response surface is a numerical representation of the function that the simulation model 
represents.  A response surface is built by recording the responses obtained from running 
the simulation model over a list of specified values for the input factors.  A response 
surface is in essence a plot that numerically characterizes the unknown function.  Hence, 
a response surface is not an algebraic representation of the unknown function. 
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A metamodel is an algebraic model of the simulation.  A metamodel approximates the 
response surface and therefore optimizers use it instead of the simulation model to 
estimate performance.  Standard linear regression has been and continues to be one of the 
most popular techniques used to build metamodels in simulation.  More recently, 
metamodels based on neural networks (Laguna and Martí, 2002), Kriging (van Beers and 
Kleijnen, 2003) and the Lever Method (April, et al., 2003) have also been developed and 
used for estimating responses based on input factors.  Once a metamodel is obtained, in 
principle, appropriate deterministic optimization procedures can be applied to obtain an 
estimate of the optimum (Fu, 2002). 

3. CLASSICAL APPROACHES FOR SIMULATION OPTIMIZATION 

Fu (2002) identifies 4 main approaches for optimizing simulations: 
 

• stochastic approximation (gradient-based approaches) 
• (sequential) response surface methodology 
• random search 
• sample path optimization (also known as stochastic counterpart) 

 
Stochastic approximation algorithms attempt to mimic the gradient search method used in 
deterministic optimization.  The procedures based on this methodology must estimate the 
gradient of the objective function in order to determine a search direction.  Stochastic 
approximation targets continuous variable problems because of its close relationship with 
steepest descent gradient search.  However, this methodology has been applied to discrete 
problems (see e.g. Gerencsér, 1999). 
 
Sequential response surface methodology is based on the principle of building 
metamodels, but it does so in a more localized way.  The “local response surface” is used 
to determine a search strategy (e.g., moving to the estimated gradient direction) and the 
process is repeated. In other words, the metamodels do not attempt to characterize the 
objective function in the entire solution space but rather concentrate in the local area that 
the search is currently exploring. 
 
A random search method moves through the solution space by randomly selecting a point 
from the neighborhood of the current point.  This implies that a neighborhood must be 
defined as part of developing a random search algorithm.  Random search has been 
applied mainly to discrete problems and its appeal is based on the existence of theoretical 
convergence proofs.  Unfortunately, these theoretical convergence results mean little in 
practice where it’s more important to find high quality solutions within a reasonable 
length of time than to guarantee convergence to the optimum in a n infinite number of 
steps. 
 
Sample path optimization is a methodology that exploits the knowledge and experience 
developed for deterministic continuous optimization problems.  The idea is to optimize a 
deterministic function that is based on n random variables, where n is the size of the 
sample path.  In the simulation context, the method of common random numbers is used 
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to provide the same sample path to calculate the response over different values of the 
input factors.  Sample path optimization owes its name to the fact that the estimated 
optimal solution that it finds is based on a deterministic function built with one sample 
path obtained with a simulation model.  Generally, n needs to be large for the 
approximating optimization problem to be close to the original optimization problem 
(Andradóttir, 1998). 

 
While these four approaches account for most of the literature in simulation optimization, 
they have not been used to develop optimization for simulation software.  Fu (2002) 
identifies only one case (SIMUL8’s OPTIMZ) where a procedure similar to a response 
surface method has been used in a commercial simulation package.   

 
Since Fu’s article was published, however, SIMUL8 has abandoned the use of OPTIMZ, 
bringing down to zero the number of practical applications of the four methods 
mentioned above.  Andradóttir (1998) gives the following explanation for the lack of 
practical (commercial) implementations of the methods mentioned above: 

 
“Although simulation optimization has received a fair amount of attention from the 
research community in recent years, the current methods generally require a considerable 
amount of technical sophistication on the part of the user, and they often require a 
substantial amount of computer time as well.” 

 
Leading commercial simulation software employs metaheuristics as the methodology of 
choice to provide optimization capabilities to their users.  We explore this approach to 
simulation optimization in the next section.   
 
4. Metaheuristic approach to simulation optimization 
 
Nowadays nearly every commercial discrete-event or Monte Carlo simulation software 
package contains an optimization module that performs some sort of search for optimal 
values of input parameters rather than just performs pure statistical estimation.  This is a  
significant change from 1990 when none of the packages included such a functionality.  
 
Like other developments in the Operations Research/Computer Science interface (e.g., 
those associated with solving large combinatorial optimization problems) commercial 
implementations of simulation optimization procedures have only become practical with 
the exponential increase of computational power and the advance in metaheuristic 
research.  The metaheuristic approach to simulation optimization is based on viewing the 
simulation model as a black box function evaluator. 
 
Figure 1 shows the black-box approach to simulation optimization favored by procedures 
based on metaheuristic methodology.  In this approach, the metaheuristic optimizer 
chooses a set of values for the input parameters (i.e., factors or decision variables) and 
uses the responses generated by the simulation model to make decisions regarding the 
selection of the next trial solution. 
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         Figure 1: Black box approach to simulation optimization 

 
Most of the optimization engines embedded in commercial simulation software are based 
on evolutionary approaches.  The most notable exception is the optimization algorithm in 
WITNESS, which is based on search strategies from simulated annealing and tabu search.  
(Incidentally, simulated annealing may be viewed as an instance of a random search 
procedure; its main disadvantage is the computational time required to find solutions of a 
reasonably high quality.) 
 
Evolutionary approaches search the solution space by building and then evolving a 
population of solutions.  The evolution is achieved by means of mechanisms that create 
new trials solutions out of the combination of two or more solutions that are in the current 
population.  Transformation of a single solution into a new trial solution is also 
considered in these approaches.  Examples of evolutionary approaches utilized in 
commercial software are shown in Table 1. 

 
Table 1: Commercial Implementations of Evolutionary Approaches to Simulation Optimization 

 
Optimizer Technology Simulation Software 
OptQuest Scatter Search 

(Tabu Search) 
AnyLogic 

Arena 
Crystal Ball 

CSIM19 
Enterprise Dynamics 

Micro Saint 
ProModel 

Quest 
SimFlex 

SIMPROCESS 
SIMUL8 
TERAS 

Evolutionary 
Optimizer 

Genetic 
Algorithms 

Extend 

Evolver Genetic 
Algorithms 

@Risk 

AutoStat Evolution 
Strategies 

AutoMod 
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We have enclosed Tabu Search in parentheses following the listing of Scatter Search 
because these two methods derive from common origins and are frequently coupled, as 
they are in OptQuest. (See Glover, Laguna and Marti, 2003.) The main advantage of 
evolutionary approaches in general over those based primarily on sampling the 
neighborhood of a single solution (e.g., simulated annealing) is that they are capable of 
exploring a larger area of the solution space with a smaller number of objective function 
evaluations, provided they are implemented effectively.  Since in the context of 
simulation optimization evaluating the objective function entails running the simulation 
model, being able to find high quality solutions early in the search is of critical 
importance.  A procedure based on exploring neighborhoods would be effective if the 
starting point is a solution that is “close” to high quality solutions and if theses solutions 
can be reached by the move mechanism that defines the neighborhood. 

5. Solution Representation and Combination 

The methods that are designed to combine solutions in an evolutionary metaheuristic 
approach depend on the way solutions are represented.  We define a solution to the 
optimization problem as a set of values given to the decision variables (i.e., the input 
parameters to the simulation model, also called factors).  For continuous problems, a 
solution is given by a set of real numbers.  For pure integer problems, a solution is 
represented by a set of integer values.  A special case of integer problems, called 
Boolean, are those where the decision variables can take only two values: zero and one.  
Other solution representations include permutations, where the input parameters are 
integer values are required to be all different.  Complicated problems have mixed solution 
representations with decision variables represented with continuous and discrete values as 
well as permutations. 

6. Use of Metamodels 

Metaheuristic optimizers typically use metamodels as filters with the goal of screening 
out solutions that are predicted to be inferior compared to the current best known 
solution.  Laguna and Martí (2002) point out the importance of using metamodels during 
the metaheuristic search for the optimal solution: 

 
“Since simulations are computationally expensive, the optimization process would be 
able to search the solution space more extensively if it were able to quickly eliminate 
from consideration low-quality solutions, where quality is based on the performance 
measure being optimized.” 

 
Some procedures use neural networks to build a metamodel and then apply predefined 
rules to filter out potentially bad solutions.  The main issues that need to be resolved in an 
implementation such as this one are: 

 
• the architecture of the neural network 
• data collection and training frequency 
• filtering rules 
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The architecture of the neural network must be general enough to be able to handle a 
wide variety of situations, since the trained neural network becomes the metamodel for 
the simulation model that evaluates the objective function.   
 
In addition to neural networks, a new type of metamodel called the Lever Method (April, 
et al., 2003) has recently been developed and incorporated within the OptQuest engine. In 
this case, the architecture of the system implicitly consists of a mixed integer 
programming model that is adaptively generated and revised as new solutions are 
uncovered that give additional information about the characteristics of the solution space.  
 
Metamodels can also be used as a means for generating new trial solutions within a 
metaheuristic search.  For example, the Lever Method not only provides a mixed integer 
representation but makes it possible to generate piecewise linear subregions (typically 
nonconvex) that approximate the shape of critical areas of the space where improved 
solutions are likely to be found. Figure 2 depicts the metaheuristic optimization process 
with a metamodel filter. 

 
 

 

f(x) 

Metaheuristic 
Optimizer 

Simulation Model

Metamodel 

Good 
F(x) 

x

Yes 

F(x) 

No 

Discard x 

                 Figure 2: Metaheuristic optimizer with a metamodel filter 
 

 
7. Constraints 
 
An important feature in simulation optimization software is the ability to specify 
constraints.  Constraints define the feasibility of trial solutions.  Constraints may be 
specified as mathematical expressions (as in the case of mathematical programming) or 
as statements based on logic (as in the case of constraint logic programming).  In the 
context of simulation optimization, constraints may be formulated with input factors or 
responses. 
 
Suppose that a Monte Carlo simulation model is built to predict the performance of a 
portfolio of projects.  The factors in this model are a set of variables that represent the 
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projects selected for the portfolio.  A number of statistics to define performance may be 
obtained after running the simulation model.  For instance, the mean and the variance on 
the returns are two responses that are available after running the simulation.  Percentile 
values are also available from the empirical distribution of returns.  Then, an optimization 
problem can be formulated in terms of factors and responses, where one or more 
responses are used to create an objective function and where constraints are formulated in 
terms of factors and/or responses. 
 
If the constraints in a simulation optimization model depend only on input parameters 
then a new trial solution can be checked for feasibility before running the simulation.  An 
infeasible trial solution may be discarded or may be mapped to a feasible one when its 
feasibility depends only on constraints formulated with input parameters.  OptQuest, for 
instance, has a mechanism to map infeasible solutions of this type into feasible ones. 
 
On the other hand, if constraints depend on responses then the feasibility of a solution is 
not known before running the simulation.  In the application described in the next section, 
for example, a constraint that specifies that the variance of the returns should not exceed 
a desired limit cannot be enforced before the simulation is executed.   
 
8. Budget-Constrained Project Selection Example 
 
We illustrate the benefits of simulation optimization applied to a project selection 
problem by using Crystal Ball for the simulation and OptQuest for the optimization.  The 
problem may be stated as follows.  A company is considering investing in 5 different 
projects and would like to determine a level of participation in each project: 

 
• Tight Gas Play Scenario (TGP) 
• Oil – Water Flood Prospect (OWF) 
• Dependent Layer Gas Play Scenario (DL) 
• Oil - Offshore Prospect (OOP) 
• Oil - Horizontal Well Prospect  (OHW) 

 
The company has information regarding the cost, probability of success and estimated 
distribution of returns for each project.  The company also knows that the total 
investment should not exceed a specified limit.  With this information, the company has 
built a ten-year Monte Carlo simulation model that incorporates different types of 
uncertainty. 
 
A base optimization model is constructed where the objective function consists of 
maximizing the expected net present value of the portfolio while keeping the standard 
deviation of the NPV to less than 10,000 M$.  The base model has 5 continuous variables 
bounded between 0 and 1 to represent the level of participation in each project.  It also 
has two constraints, one that limits the total investment and one that limits the variability 
of the returns.  Therefore, one of the constraints is solely based on input factors and the 
other is solely based on a response.  The results from optimizing the base model with 
OptQuest are summarized in Figure 3. 
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Frequency Chart

 M$

Mean = $37,393.13
.000

.007

.014

.021

.028

0

7

14

21

28

$15,382.13 $27,100.03 $38,817.92 $50,535.82 $62,253.71

1,000 Trials    16 Outliers

Forecast: NPV

TGP = 0.4, OWF = 0.4, DL = 0.8, OHW = 1. 
E(NPV) = 37,393   σ =9,501 

 
Figure 3: Results for base case 

 
The company would like to compare the performance of the base case with cases that 
allow for additional flexibility and that define risk in different ways.  Hence, we now 
formulate a “deferment” case that consists of allowing the projects to start in any of the 
first three years in the planning horizon of 10 years.  The number of decision variables 
has increased from 5 to 10, because now the model must choose the starting time for each 
project in addition to specifying the level of participation.  It is interesting to observe that 
in a deterministic setting, the optimization model for the deferment case would have 15 
binary variables associated with the starting times.  The model also would have more 
constraints than the base mode, in order to assure that the starting time of each project 
occurs in only one out of three possible years.  Let yit equal 1 if the starting time for 
project i is year t and equal 0 otherwise.  Then the following set of constraints would be 
added to a deterministic optimization model: 

 
 y11 + y12 + y13 = 1 
 y21 + y22 + y23 = 1 
 y31 + y32 + y33 = 1 
 y41 + y42 + y43 = 1 
 y51 + y52 + y53 = 1 

 
However, in our simulation optimization setting, we only need to add 5 more variables to 
indicate the starting times and no more constraints are necessary.  The only thing that is 
needed is to account for the starting times when these values are passed to the simulation 
model.  If the simulation model has the information regarding the starting times, then it 
will simulate the portfolio over the planning horizon accordingly.  The summary of the 
results for the deferment case is shown in Figure 4. 
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Frequency Chart
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$25,668.28 $37,721.53 $49,774.78 $61,828.04 $73,881.29
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Forecast: NPV

TGP1 = 0.6, DL1=0.4, OHW3=0.2 
E(NPV) = 47,455   σ =9,513  10th Pc.=36,096 

 
Figure 4: Results for deferment case 

 
Comparing the results of the deferment case and the base case, it is immediately evident 
that the flexibility of allowing for different starting times has resulted in an increase in 
the expected NPV.  The new portfolio is such that it delays the investment on OHW until 
the third year and it does not invest anything on OWF, for which the level of participation 
was 40% in the base case.  The results in Figure 4 also show that the 10th percentile of the 
distribution of returns is 36,096 M$.  This information is used to model our third and last 
case. 
 
Encouraged by the results obtained with the model for the deferment case, the company 
would like to find both the participation levels and the starting times for a model that 
attempts to maximize the probability that the NPV is 47,455 M$.  This new “Probability 
of Success” model changes the definition of risk from setting a maximum on the 
variability of the returns to maximizing the probability of obtaining a desired NPV.  The 
new model has the same number of variables and fewer constraints as the previous one, 
because the constraint that controlled the maximum variability has been eliminated.  The 
results associated with this model are shown in Figure 5. 

 

Frequency Chart
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$43,258.81 $65,476.45 $87,694.09 $109,911.73 $132,129.38
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Forecast: NPV

TGP1 = 1.0, OWF1=1.0, DL1=1.0, OHW3=0.2 
E(NPV) = 83,972     σ =18,522   
P(NPV > 47,455) = 0.99 

 
Figure 5: Results for probability of success case 

 
The results in Figure 5 show that the new optimization model has the effect of “pushing” 
the distribution of NPVs to the right, i.e., to the larger returns.  Therefore, although the 
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variability has exceeded the limit that was used in the base case to control risk, the new 
portfolio is not more risky than the first two considering that with a high probability the 
NPV will be at least as large as the expected NPV in the deferment case.  In fact, the 10th 
percentile of the new distribution of returns is larger than the one in Figure 4. 
 
9. Conclusions 
 
We have introduced the key concepts associated with the area of optimizing simulations,  
starting with the approaches that researchers have investigated for many years.  For the 
most part, these approaches have not found use in commercial software. 
 
We then discussed the metaheuristic approach to simulation optimization, which is the 
approach widely used in commercial applications. Key aspects that are relevant to 
implementation, in addition to the fundamental strategies underlying the metaheuristic, 
are the solution representation, the use of metamodels and the formulation of constraints. 
 
Finally, we provided a project selection example that showed the advantage of combining 
simulation and optimization.  The level of performance achieved by the solutions found 
with optimization far exceeds that to be derived from a manual what-if analysis because 
of the overwhelmingly large number of possible scenarios that must be considered. 
 
There is still much to learn and discover about how to optimize simulated systems both 
from the theoretical and the practical points of view.  The rich variety of practical 
applications and the dramatic gains already achieved by simulation optimization insure 
that this area will provide an intensive focus for study and a growing source of practical 
advances in the future. 
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