Laronoyp “X-dq

8002 ‘L 11ady

4 R

Title: A Filtering Algorithm for Constraints of Difference in CSPs
Author: J.-Ch. Régin

Proc.: AAAT 1994

Pages: 362-367

Foundations of Constraint Processing
CSCE421/821, Spring 2008
www.cse.unl.edu/ choueiry/S08-421-821/

Berthe Y. Choueiry (Shu-we-ri)
Avery Hall, Room 123B
choueiry@cse.unl.edu, Tel: (402)472-5444

Images scanned from paper by Nimit Mehta

\ /

Laronoyp X-dq

8002 ‘L 11ady

-

< Q
R E
2. B —_
o @ !
= g Q.
o 2. :
n
P B
% > Q) 8
Q =
a I 28
= = ~
L § g.
> t =
- :
D x §
_mm —
(e}

Laronoyp “X-dq

-~

Context: finite CSPs
Goal: efficiency of arc consistency

Focus: All-diff constraints

w
. . Space : O(pd)
Result: efficient algorithm
Time : O(p?d?)
p: #vars, d: max domain size
Application: used in RESYN for subgraph isomorphism
(plan synthesis in organic chemistry)
g
w
<
:
“ | Contributions
e An algorithm to establish arc consistency in an all-diff

constraint

— efficient
e — powerful pruning

e An algorithm to propagate deletions among several all-diff

constraints
N e Illustration on the zebra problem
kel

4 h

Why?

e GAC4 handles n-ary constraints
— good pruning power
— quite expensive:
depends on size and number
of all admissible tuples — (dfi!p)!

p: #vars, d: max domain size

e Replace n-ary by a set of binary constraints,
then use AC-3 or AC-4
— cheap

— bad pruning

N /

B.Y. Choueiry 5

April 7, 2008

-

N

Example

e n-ary constraint

X2 X3
GAC4: rules out a, b for x3

e Set of binary constraints
x1

X2 X3
AC-3/4 ends with no filtering

/

B.Y. Choueiry 6

April 7, 2008

Laronoyp “X-dq

/N otations \

CSP: P = (X,D,C)

C € C defined on X¢ = {x;,, ®j,,...,2;,} C© X
p: arity of C, p = | X¢|
d: max |D,,]|

e A value a; for z; is consistent for C, if 3 values for other all

~ | variables in X such that these values and a; simultaneously
satisty C
e A constraint C' is consistent, if all values for all variables X are
consistent for C
e A CSP is arc-consistent, if all constraints (whatever their arity)
are consistent
>
'.c
k? e A CSP is diff-arc-consistent iff all its all-diffs constraints are
=]
Y Karc—con&stent /
&
w
va N
Q wn —+
: 2 g o o< < =2 <
- 5 5 3)
z 2 5 S 2 2 2 -
Qo = 2 2 g =3
<5 5 5 =& 5 g = A
o o Ao B Qg X
Y - — Q|8 X
=) 8 59X 2 EEg
D (~) S — =0
w = e QN o & =
T N — Q N> =
= ~—
S — I Qe
Q. X w —~ [Q
o0 e . = |x B &5
: i =
— [e)] - .
91') & C "é“ o 5 =B
= m 8 S, —~ -+
:3 m = 91) ~
o) > N =+
@ 5] Q § EE/ =+
: 57 T2
X X X XX = oQ
= 3% 3 BB K S B
=) s <
: EEEERERS =
3
o
o
o0

Laronoyp “X-dq

8002 ‘L 11ady

/Deﬁnitions: matching

xk%
i
\
—
\

Max. matching biggest possible

an edge in matching

\consistent

2
=3
L4
5
-6
=7

Matching: a subset of edges in G with no vertex in common

Matching covers a set X: every vertex in X is an endpoint for

- Left: M that covers X¢ is a max matching
- If every edge in GV(C) is in a matching that covers X¢, C is

/

OI Laronoyp X-dq

8002 ‘L 11ady

-

Theorem 1
CSP: P = (X,D,(C) is diff-arc-consistent iff
for every all-diff C € C

that covers X¢ in GV(C)

Task:
Repeat for each all-diff constraint,
- Build G (= GV) of all-diff constraint C

-

every edge GV(C') belongs to a matching

- Remove edges that do not belong to any matching covering X¢

~

/

IT Laronoyp “X-dq

8002 ‘L 11ady

-~

-

Algorithm 1:

- Compute one M(G), maximal matching in G
- If M(G) does not cover X¢, then stop
- Using M(G), remove edges that do not belong...

Algorithm 1: DIFF-INITIALIZATION(C)
% returns false if there is no solution, otherwise true
% the function COMPUTEMAXIMUMMATCHING (G) com-
putes a maximum matching in the graph G
begin
Build G = (X¢, D(X¢), E)
M(G) + CoMPUTEMAXIMUMMATCHING(G)
if [M(G)| < |Xc| then return false
REMOVEEDGESFROMG(G,M(G))
return true
end

— Hopcroft & Karp: Efficient procedure
for computing a matching covering X¢

— Or, maximal flow in bipartite graph (less efficient)

4l Laronoyp X-dq

8002 ‘L 11ady

-~

-

Given:

Our problem becomes

- an all-diff constraint C
- its value graph G = (X, Y, F)

- one maximum covering M (G)

Remove edges that belong to no matching covering X

-

Definitions
a—T"

x2m gs 2
x34 73
w %’ 4
s 55
x5="|

x6-<_ °

- =7

Given a matching M:
matching edge: an edge in M
free edge: an edge not in M

free vertex: otherwise

edges are alternatively matching and free

N

matched vertex: incident to a matching edge

alternating path (cycle): a path (cycle) whose

length of a path: number of edges in path

vital edge: belongs to every maximum matching

/

B.Y. Choueiry 13

April 7, 2008

-

Questions
.
x1 a
X2 b
X3 c
N)
Indicate:

matching edges

free edges

matched vertices

a free vertex

an alternating path, length?

an alternating cycle, length?

a vital edge

N

/

B.Y. Choueiry 14

April 7, 2008

Laronoyp “X-dq

-~

Property 1 (Berge)

- an even alternating cycle, or

An edge belongs to some of but not all maximum matchings, iff for
an arbitrary maximum matching M, it belongs to either:

- an even alternating path that begins at a free vertex

~

= "
Yo) X2- gbz
X 2 X34 73
4
X2 b x4‘% g
b
x54<_ 6
X3 c X6=""|
. ~— N — 1/
3
w
<
e
% | Thus:
The edges to remove should not be in:
- all matchings (vital)
- an even alternating path starting at a free vertex
- an even alternating cycle
S 1|
(x1=—"7
— N - =2
x1 a X2 E
X34 3
4
X2 b x4‘% I
5
x54<_ 5
X3 c X6=""|
*9% — N — _7/

/Given:

- every directed cycle in G corresponds to an even alternating

/

corresponds to an even alternating path of GG starting at a free

- every directed simple path in G, starting at a free vertex
\vertex, an conversely

B.Y. Choueiry

wn

<D}

=

<3

o0 O

o g
e =
=
G S)
S . -

N ™
Lﬂnbo% x x x =
~ 5 3 -
N".QU @)
Q S
=3 <
O =M 2,
| T |]
17

April 7, 2008

N

(Tasic A

Given G, and M(G), remove edges that do not

belong to any matching covering X

Algorithm 2

Build Go
Mark all edges of G as unused

Identify all directed edges that belong to a
directed simple path starting at a free vertex

by a breadth-first search, mark them as used

Compute strongly connected components in
Go. Mark “used” any directed edge between
two vertices in the same strongly connected
component, as any such edge belongs to a
directed cycle and conversely

All remaining unused edges,
if they are in M (G), mark them as vital

else put them in RE and remove them from G

/

B.Y. Choueiry 18

April 7, 2008

4 A 4 N

x1 a

Algorithm 2
X2 b

Algorithm 2: REMOVEEDGESFROMG (G,M (G))
% RE is the set of edges removed from G.
% M(G) is a matching of G which covers X X3
% The function returns RE
begin
1 giirﬁglitgiéected edges in Go as ‘unused”. Algorithm 2
2 Look for all directed edges that belong to
a directed simple path which begins at a free
vertex by a breadth-first search starting from))
free vertices, and mark them as “used”. e Identify all edges starting at a free vertex by a
3 Compute the strongly connected components of Go.
Mark as “used” any directed edge that joins two
vertices in the same strongly connected component.

breadth-first search, mark them as used

e Compute strongly connected components in Go.

4 for each directed edge de marked as “unused” do

set e to the corresponding edge of de Mark “used” any directed edge between two

- (13 4]

:;:ee W) Ehbnkmeltlsietas il vertices in the same strongly connected
RE + RE U {e} : component, as any such edge belongs to a
remove e from G .

directed cycle and conversely
return RE
end

e All remaining unused edges,
if they are in M (G), mark them as vital
else put them in RE and remove them from G

N / N /

B.Y. Choueiry].9 April 7, 2008 B.Y. Choueiry 20 April 7, 2008

~
/
N
/

x1

X2
X3

x4

.7
j!

X6

~N~ O g A WN

Algorithm 2

e Identify all edges starting at a free vertex by a

breadth-first search, mark them as used

e Compute strongly connected components in Go.
Mark “used” any directed edge between two
vertices in the same strongly connected
component, as any such edge belongs to a

directed cycle and conversely

use the fact that before deletion due to C,
a matching covering X, was known in GV(C;)

e All remaining unused edges,
if they are in M (G), mark them as vital

\\ else put them in RE and remove them from G / \\

B.Y. Choueiry 21 April 7, 2008 B.Y. Choueiry

A variable x may be in more than one all-diff constraints,
i.e. © may be in X¢, and X¢;, with C; and C; two all-diff

Given C, remove edges that are not consistent for C
constraints

How to propagate the effect of filtering of C; on

— start from scratch?
— propagate deletions more intelligently

So far..
.. but,

/

April 7, 2008

[\)
[\)

a o0 N 7 Consider Ci, G — GV(Cy), M(Q) N
.3 Set RE — RE(C;)
+—
: ER — RE(C,) U RE(C})
WM a
.m m Algorithm 3: DirF-ProPAGATION(G,M(G),ER,RE)
o = % the function returns false if there is no solution
— o) % G is a value graph
5 — % M(G) is a matching which covers X¢
mo = % ER is the set of edges to remove from G
< = % RE is the set of edges that will be deleted by the
60 O ©n filtering
R= - S %o begin
A O 2 compute Matching + false
e O 4 S w 1 for each e € ER do
g2 3@ % = if e € M(G) then
. = - Z E M(G) &« M(G) - (e}
O = O 2 g if e is marked as “vital” then return false
1m <) W\ S ¢ N else compute Matching + true
T = s & _m | remove e from G
<) o= @) S M 2 2 if computeMatching then
Y G- 5 if = MATCHINGCOVERINGX (G, M (G),M’) then
O mu\ @) = ..m o0 | return false
g Wmu ﬂ_w S C o3 < else
= ifmlew :rEETE
L v OB B2 oA o 3 | RE + REMOVEEDGESFROMG (G, M (G))
) 2 g m i W aa =t return frue
g W. S 5 g 32 5 end
= ® 7 - 4 — Q
95} m Q 2 m 8 = < =
@ 3 o o2 g 2.8
/ < O HOK®=EHK \ / \
B.Y. Choueiry Mw April 7, 2008 B.Y. Choueiry M% April 7, 2008

-

Example: the Zebra problem

5 houses of different colors
5 inhabitants, different nationalities, different
pets, different drinks, different cigarettes

Consider the following facts:
1. The Englishman lives in the red house
2. The Spaniard has a dog
3. Coffee is drunk in the green house
4. The Ukrainian drinks tea

5. The green house is immediately to the right of

the ivory house
6. The snail owner smokes Old-Gold

7. etc.

Query: who drinks water?

who owns a zebra?

N

/

B.Y. Choueiry 25

April 7, 2008

-~

Zebra: formulation

(5 house-color C1,C5, ..., C5
5 nationalities N1, Na,..., N5
5 drinks B4y, Bs, ..., By
5 cigarettes 11,75, ...,T5

| O pets A1, Ao, ..., A5

25 variables: <

C]_ I'Ed
Chgreen |Batea
Caivoiry |[Bsmilk |[N3 Ukranian
C\4 yellow|B4 orange{/N4 Norwegian
Csblue |Bswater |Ns Japanese

B, coffee |N1 Englishman|Ty Old-Gold |Adog
N Spaniard [T> Chesterfield |A2snails
3 Kools Aj fox
s Lucky-Strike{A4 horse
< Parliament |Aszebra

Domain of each variable = {1,2,3,4,5}
(= {h1,h2,h3, h4, h5})
Constraints 2—15?

N

~

/

B.Y. Choueiry 26

April 7, 2008

4 O\
(=]
(=]
[a]
. N
% =
B
o
g <
=
=
)
252 =
CER R W
v EBE (B g
C wnmnoa.“ ._|‘|_.\T.....234.5 MU \mlam‘oad.:u :ﬂlmu)
ko kS w M52345 5 1N ey TR e mNd] h
<< @nm - DS £ G RS = ksl o < -
S g € S S Mb = ,ﬁu.\nw.d.,a “52 =
T BE- = = = Sl AN b2 =
W (L= &\T“134354 W HHMO.A.E @&1245 m W %
w \:/.,.m.2345 \.“A e .lm 5M“245 B w e .I“mU .
V “MESA.S yﬂl,A:ZlSvd.Biq V HCA..D \ﬂﬂl V o
.IO. :6345 e S R T .IO. < [0 M/.\”“ .IO. 195
@ pEk=a) EEH & D= 2o
— 2 3%345 ,.+|_\.Al34354 3 R
n n \m/ﬂw.345 =] S SR IR n =
~~ = = N
= 8 S EEb= EEH g 8
~— ~ ~
£ = = E ¢
.“Iu. = = =R N
n & = 8 »n | i
) = — — g
R 0 @) O 2
f = = = K 5
>
m
4 O\
(]
(=]
[a]
N
m
o
<
jooedg AN oY) Ypm pooedor ore sjureIjsuod Are-g oyJ, ‘¢
dSO Areurq-uou :SjUTRIISUOD JIP-[[R AIR-G 9AT] ',
I~
™

dSH Areurq :191snyo yoes url ired Aue usemiaq jurerisuod Areurqg |

T JUIRIISUO.) SUIIR[NULIO]

N /

B.Y. Choueiry

4 h

Results (11)

~
/

of binary constraints
size of a cluster
of clusters

of values in a domain

=0 8

O(ad?): complexity of AC on binary

Formulation 1 solved with AC
- number of binary constraint added is O(cp?)

- filtering complexity is O((a + cp?)d?)

Formulation 2 solved with GAC-4

(e.g., functional, anti-functional, monotonic, all-diffs)

(e.g., tree, biconnected components, DAG)

e identifying special structures in the constraint graph

Improved bounds by J.-F. Puget (AAAI 99) for ordered domains
e identifying special types of constraints

We can improve the performance of search by:

- filtering complexity is O(ﬁp) %0
Formulation 3 solved with the new technique E
- arc-consistency is O(ad?) o Qj
- all-diff filtering is O(cp?d?) 2 o
- total filtering is O(ad? + cp?d?) % E 8
% 5% &
\\ / \\ = 2 - /
B.Y. Choueiry 29 April 7, 2008 B.Y. Choueiry 30 April 7, 2008

Laronoyp “X-dq

1€

8002 ‘L 11ady

-~

Improved arc-consistency Van Hentenryck et al. ATJ 92
Functional

A constraint C' is functional with respect to a domain D iff for all

v € D (respectively w € D) there exists at most one w € D
(respectively v € D) such that C(v,w).

Anti-functional

A constraint C' is anti-functional with respect to a domain D iff

—(' is functional with respect to D.
Monotonic

A constraint C' is monotonic with respect to a domain D iff there

exists a total ordering on D such that, for all values v and w € D,
C'(v,w) holds implies C(v’,w") holds for all values v' and w’ € D
such that v < v and v’ < w. /

