
Spring Semester, 2009 B.Y. Choueiry
CSCE 421/821: Foundations of Constraint Processing

Homework 2

Implementation of Backtrack Search (BT)

Assigned: Wednesday, February 4, 2009

Due: Friday, February 13, 2009

Total value: 100 points. Penalty of 20 points for lack of clarity and documentation in code.

Contents

1 General indications 2

2 Basic data structures for backtrack search 2

3 Main functions/methods 4
3.1 Basic functionalities . 4
3.2 Variable/value ordering . 4

4 Backtrack search (BT) 5

5 Performance comparison 5

The goal of this homework and future couple of homework is to implement generic CSP solvers
based on backtrack search and test their performance on the problem instances of Homework 1.
Again, you are advised to do this homework carefully as it will provide the building-blocks to the
following one(s) and perhaps even your project. The various components of the homework will
address the following issues:

• Solver: Implementing the data structures of a generic backtrack-search solver. 5 points

• Ordering heuristics: Implementing functions for manipulating data and for variable-ordering
heuristics. 30 points

• BT: Implementing the vanilla-flavor backtrack search (BT). 30 points

• Performance reporting: Reporting the results obtained for finding one and all solutions for
each of the binary instances loaded in Homework 1. 35 points

1

1 General indications

• This homework must be done individually. You are welcome to discuss it with colleagues, but
please do your own implementation.

• If you receive help from anyone, you must clearly acknowledge it.

• Always acknowledge sources of information (URL, book, class notes, etc.).

• Please inform us quickly about typos or other errors. Also, do email us any suggestions for
improvement.

• Please make sure that you keep your code and protect your files. Your name, date, and course
number must appear in each file of code that you submit.

• All programs must be compiled, run and tested on cse.unl.edu. Programs that do not run
correctly in this environment will not be accepted unless prior approval is obtained.

• A README file must be submitted. Otherwise, the entire homework is declared invalid. The
README file should describe the content and purpose of the submitted files, and have all
the necessary steps to compile and run the program.

• You can use the programming language of your choice. We are not able to provide any
programming/debugging help. You are encouraged to put your results (in terms of nodes
visited, constraint checks and CPU time) as soon as possible on the wiki page provided for
this purpose and share them with colleagues for quick feedback and debugging.

• Please inform instructor quickly about typos or other errors that may appear in the specifi-
cations or the files made available online.

• If you have a better idea for implementing your code and data structures, then you should
experiment with it, and consider the data structures below as mere recommendations.

2 Basic data structures for backtrack search

Below we specify (as best we can) the different fields required for the CSP solver class, which is the
BT in this homework.

• problem: A pointer to the CSP instance being solved.

• time-setup: (optional) The value of CPU time that the solver has spent on the set-up, such
as the creation and initialization of the data structures necessary for the solver.

• cpu-time: The value of CPU time that the solver has spent working on solving the instance.

2

• cc: The number of calls to check, which is the number of constraint checks as discussed
in class. #CC is incremented every time you check whether two variable-value pairs are
consistent given the constraint over the two variables (i.e., a call to Check(i,j) in x-Label).

• nv: The number of nodes visited is incremented every time a value is assigned to a variable
(which happens in x-label, e.g., at line 4 of the function bt-label)1

• bt: The number of times backtracking occurs. That number is equal to the number of times
a variable is uninstantiated in x-unlabel. Although #NV and #BT are strongly related,
measuring and recording #BT may help you debugging your code by comparing with results
obtained by hand or by colleagues.

• variable-ordering-heuristic: should store the name of the variable ordering heuristic
used. By default, we are going to use increasing lexicographical ordering.

• var-static-dynamic: is equal to ‘static’ if static variable ordering is used, otherwise equal
to ‘dynamic’.

• value-ordering-heuristic: should store the name of the value ordering heuristic used. By
default, we are going to use increasing lexicographical ordering.

• val-static-dynamic: is equal to ’static’ if static variable ordering is used, otherwise equal
to ’dynamic’.

The information contained in the fields listed above should be printed at the end of every
program execution.

During the search process, the following data structures are required to hold the state of the
algorithm:

• current-path: A 1-dimensional array or list that stores in each entry the structure of a
variable instantiated at the level of the entry.

When using static variable ordering, the array is initialized before search is started. Under
dynamic ordering, these entries are filled as search proceeds.

• assignments: A data structure to hold the values assigned to each variable. Note that the
information that this data structure is holding could be included in current-path or in the
variable itself. Having the assignments data structure is a major convenience for debugging
and printing the results.

• current-domain: The current domain of each variable as search proceeds. As search proceeds,
values from the domain of the variables are removed or added back. This data structure should
be carefully designed so that the removal or addition of values can be performed (ideally) in
constant time.

1For those that in CSE476/876, be careful not to confuse the number of nodes expanded (i.e., those that have
children) with that of the number of nodes visited. That is a common source of error.

3

3 Main functions/methods

It is essential that you design the different modules of your program appropriately because some of
the modules that you implement here will be used in combination with others in the next homeworks.
For this purpose it is essential that you carefully study Prosser’s paper, and make sure you read it
completely to get a sense of what modules are going to be replaced by others.

3.1 Basic functionalities

Consider implementing the following methods that will be used in this or next programming tasks.
These methods also enhance the modularity of your code.

• unassigned-variables: a method that applies to the instance ‘in the CSP solver’ and returns
the list of unassigned variables in the problem instance being solved.

• instantiated-vars: a method that applies to the instance ‘in the CSP solver’ and returns
the list of instantiated variables in the problem instance being solved.

• unassigned-vars: a method that applies to a constraint and returns the list of variables in
the scope of the constraint that have not been instantiated.

• instantiated-vars: a method that applies to a constraint and returns the list of variables
in the scope of the constraint that have been instantiated.

3.2 Variable/value ordering

In the current homework, we will restrict ourselves to static variable and static value ordering.
Dynamic variable ordering is significant only if we are using some kind of lookahead, such as
forward checking. (Try to guess why.) We will implement dynamic variable ordering in a future
homework. We will implement dynamic value ordering only if time permits. Anyway, please prepare
your code to be modular in the following way. Provide a function that ‘asks’ for the next variable
to be instantiated (respectively, the next value to be assigned).

• In case the ordering is static, the ordering will be determined before search starts and stored
in some data structure.

• In case the ordering is dynamic, the function will execute the heuristic to determine the
variable to be instantiated (respectively, value to be assigned).

• In all cases, ties in the heuristics should be broken lexicographically by the names of the variable
(respectively, value). This feature is essential to avoid randomness in the results and so that
you can compare your results with your colleagues.

The following three orderings are computed before beginning the search, using the initial state
of the variables. The order does not change during search, hence they are referred to as static
ordering heuristics.

4

• id-var-st: takes a set of variables and returns the sequence of the variables sorted lexico-
graphically by the name of the variable.

• ld-var-st implements static least-domain variable-ordering heuristic. It takes a set of vari-
ables and returns the variables sorted with the smallest domain first.

• deg-var-st implements the static degree variable-ordering heuristic. It takes a set of variables
and returns the ordered sequence of variable with the largest degree first.

• ddr-var-st: A function that implement the static domain-degree ratio variable-ordering
heuristic. ddr-var takes a set of variables and returns the variables with the smallest ra-
tio of domain size to degree, ddr= |domain size|

degree
, first.

We will implement dynamic variable ordering when we implement FC.

4 Backtrack search (BT)

Implement a simple backtrack search with static variable ordering using the above-defined data
structures, functions, and methods. However, you should prepare your code to take a dynamic
variable ordering, which will be used in the following homework.

You should pass parameters to the main function that specify

• the type of search to apply (in this case BT-solver),

• the name of the ordering heuristic, and

• whether the heuristic should be applied statistically or dynamically.

Naturally, the search mechanism described by Prosser should be modified to take these choices
into account.

To test your implementation, run it on very simple, toy problems of increasing difficulty such as
the ones provided by the instructor: http://cse.unl.edu/~choueiry/CSPTestInstances/. Compare
the results with what you find by hand and also with those of your classmates using the wiki. The
quicker results are reported in the wiki, the better the debugging by everyone.

5 Performance comparison

Finally, run your code on the binary CSP instances you loaded in Homework 1, measuring the
number of constraint checks #CC, number of nodes visited #NV, number of backtrack points
#BT, and CPU time as defined in Section 2. Note that finding all solutions allows you to debug
your code because all techniques must find the same number of solutions.

Handin your documented code and results (as an Excel sheet) as in the table shown below.
Conclude with your observations.

5

Problem Ordering One solution All solutions
#CC #NV #BT CPU time #CC #NV #BT CPU time # Solutions

Chain id-var-st
Chain ld-var-st
Chain deg-var-st
Chain ddr-var-st
K4-Coloring id-var-st
K4-Coloring ld-var-st
K4-Coloring deg-var-st
K4-Coloring ddr-var-st
3-queens id-var-st
3-queens ld-var-st
3-queens deg-var-st
3-queens ddr-var-st
AU Coloring id-var-st
AU Coloring ld-var-st
AU Coloring deg-var-st
AU Coloring ddr-var-st
4-queens id-var-st
4-queens ld-var-st
4-queens deg-var-st
4-queens ddr-var-st
6-queens id-var-st
6-queens ld-var-st
6-queens deg-var-st
6-queens ddr-var-st
Zebra id-var-st
Zebra ld-var-st
Zebra deg-var-st
Zebra ddr-var-st
etc.

6

