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Outline

• Categorization of searh tehniques

• Ordered searh (searh with an evaluation funtion)

• Best-�rst searh:(1) Greedy searh (2) A∗

• Admissible heuristi funtions:how to ompare them?how to generate them?how to ombine them?

• Iterative improvement searh:(1) Hill-limbing (2) Simulated annealing
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Types of Searh (I)
1- Uninformed vs. informed2- Systemati/onstrutive vs. iterative improvement
Uninformed :use only information available in problem de�nition,no idea about distane to goal

→ an be inredibly ine�etive in pratieHeuristi :exploits some knowledge of the domainalso useful for solving optimization problems
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Types of Searh (II)
Systemati, exhaustive, onstrutive searh:a partial solution is inrementally extended into global solution
Partial solution =sequene of transitions between statesGlobal solution =Solution from the initial state to the goal stateExamples: 8

<

:

UninformedInformed (heuristi): Greedy searh, A∗

→ Returns the path; solution = path
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Types of Searh (III)Iterative improvement:A state is gradually modi�ed and evaluated untilreahing an (aeptable) optimum

→ We don't are about the path, we are about q̀uality' of state

→ Returns a state; a solution = good quality state

→ Neessarily an informed searh
Examples (informed):8>><

>

>

:

Hill limbingSimulated Annealing (physis), Taboo searhGeneti algorithms (biology)
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Ordered searh

• Strategies for systemati searh are generated by hoosing whihnode from the fringe to expand �rst

• The node to expand is hosen by an evaluation funtion,expressing d̀esirability' −→ ordered searh

• When nodes in queue are sorted aording to their dereasingvalues by the evaluation funtion −→ best-�rst searh

• Warning: b̀est' is atually s̀eemingly-best' given the evaluationfuntion. Not always best (otherwise, we ould marh diretly tothe goal!)
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Searh using an evaluation funtion

• Example: uniform-ost searh!What is the evaluation funtion?Evaluates ost from ............. to ................?

• How about the ost to the goal?

h(n) = estimated ost of the heapestpath from the state at node n to a goal state

h(n) would help fousing searh

B.Y.Choueiry
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Cost to the goal
This information is not part of the problem desription
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Best-�rst searh
1. Greedy searh hooses the node n losest to the goalsuh as h(n) is minimal
2. A∗ searh hooses the least-ost solution

solution ost f(n)

8

>

>

<

>

>

:

g(n): ost from root to a given node n+

h(n): ost from the node n to the goal nodesuh as f(n) = g(n) + h(n) is minimal
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Greedy searh

→ First expand the node whose state is ̀losest' to the goal!

→ Minimize h(n)

function BEST-FIRST-SEARCH( problem, EVAL -FN) returns a solution sequence
inputs: problem, a problem

Eval-Fn, an evaluation function

Queueing-Fn a function that orders nodes by EVAL -FN

return GENERAL-SEARCH( problem, Queueing-Fn)

→ Usually, ost of reahing a goal may be estimated,not determined exatly

→ If state at n is goal, h(n)= ?

→ How to hoose h(n)? Problem spei�! Heuristi!
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Greedy searh: Romania

hSLD(n) = straight-line distane between n and goal loation
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Greedy searh: Trip from Arad to Buharest

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

... Greedy searh! quik, but not optimal!
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Greedy searh: ProblemsFrom Iasi to Fagaras?8

<

:

False starts: Neamt is a dead-endLooping
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Greedy searh: Properties

→ Like depth-�rst, tends to follow a single path to the goal

→ Like depth-�rst 8

<

:

Not ompleteNot optimal

→ Time omplexity: O(bm), m maximum depth

→ Spae omplexity: O(bm) retains all nodes in memory

→ Good h funtion (onsiderably) redues spae and timebut h funtions are problem dependent :�(
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Hmm...
Greedy searh minimizes estimated ost to goal h(n)

→ uts searh ost onsiderably

→ but not optimal, not ompleteUniform-ost searh minimizes ost of the path so far g(n)

→ is optimal and omplete

→ but an be wasteful of resouresNew-Best-First searh minimizes f(n) = g(n) + h(n)

→ ombines greedy and uniform-ost searhes

f(n) = estimated ost of heapest solution via n

→ Provably: omplete and optimal, if h(n) is admissible

B.Y.Choueiry
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A∗ Searh

• A∗ searhBest-�rst searh expanding the node in the fringe with minimal

f(n) = g(n) + h(n)

• A∗ searh with admissible h(n)Provably omplete, optimal, and optimally e�ient usingTree-Searh

• A∗ searh with onsistent h(n)Remains optimal even using Graph-Searh
(See Tree-Searh page 72 and Graph-Searh page 83)
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A∗ Searh From Arad to Buharest
(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380
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A∗ Searh is optimal

G, G2 goal states ⇒ g(G) = f(G), f(G2) = g(G2) h(G) = h(G2) = 0

G optimal goal state ⇒ C∗ = f(G)

G2 suboptimal ⇒ f(G2) > C∗ = f(G) (1)Suppose n is not hosen for expansion

G

n

G2

Start

h admissible ⇒ C∗ ≥ f(n) (2)Sine n was not hosen for expansion ⇒ f(n) ≥ f(G2) (3)(2) + (3) ⇒ C∗ ≥ f(G2) (4)(1) and (4) are ontraditory ⇒ n should be hosen for expansion
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Whih nodes does A∗ expand?Goal-Test is applied to State(node) when a node ishosen from the fringe for expansion, not when the node isgenerated Theorem 3 & 4 in Pearl 84, original results by Nilsson

• Neessary ondition: Any node expanded by A∗ annot have an

f value exeeding C∗: For all nodes expanded, f(n) ≤ C∗

• Su�ient ondition: Every node in the fringe for f(n) < C∗will eventually be expanded by A∗

In summary

• A∗ expands all nodes with f(n) < C∗

• A∗ expands some nodes with f(n) = C∗

• A∗ expands no nodes with f(n) > C∗

B.Y.Choueiry
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Expanding ontours
A∗ expands nodes from fringe in inreasing f valueWe an oneptually draw ontours in the searh spae

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

The �rst solution found is neessarily the optimal solutionCareful: a Test-Goal is applied at node expansion
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A∗ Searh is omplete
Sine A∗ searh expands all nodes with f(n) < C∗, it musteventually reah the goal state unless there are in�nitely many
nodes f(n) < C∗

8

>

>

<

>

>

:

1. ∃ a node with in�nite branhing fatoror2. ∃ a path with in�nite number of nodes along it
A∗ is omplete if 8

>

>

<

>

>

:

on loally �nite graphsand

∃δ > 0 onstant, the ost of eah operator > δ

B.Y.Choueiry
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A∗ Searh Complexity
Time:Exponential in (relative error in h × length of solution path)... quite badSpae: must keep all nodes in memoryNumber of nodes within goal ontour is exponential in lengthof solution.... unless the error in the heuristi funtion

|h(n)− h∗(n)| grows no faster than the log of the atual pathost: |h(n)− h∗(n)| ≤ O(log h∗(n))In pratie, the error is proportional... impratial..major drawbak of A∗: runs out of spae quikly

→ Memory Bounded Searh IDA∗(not addressed here)

B.Y.Choueiry
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A∗ Searh is optimally e�ient
.. for any given evaluation funtion: no other algorithms that �ndsthe optimal solution is guaranteed to expend fewer nodes than A∗

Interpretation (proof not presented): Any algorithm that does notexpand all nodes between root and the goal ontour risks missingthe optimal solution

B.Y.Choueiry
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Tree-Searh vs. Graph-SearhAfter hoosing a node from the fringe and before expanding it,Graph-Searh heks whether State(node) was visited before toavoid loops.

→ Graph-searh may lose optimal solution
Solutions1. In Graph-Searh, disard the more expensive path to a node2. Ensure that the optimal path to any repeated state is the �rstone found

→ Consisteny

B.Y.Choueiry
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Consisteny

h(n) is onsistentIf ∀ n and ∀ n′ suessor of n along a path, we have

h(n) ≤ k(n, n′) + h(n′), k ost of heapest path from n to n′

Monotoniity

h(n) is monotoneIf ∀ n and ∀ n′ suessor of n generated by ation a, we have

h(n) ≤ c(n, a, n′) + h(n′), n′ is an immediate suessor of nTriangle inequality (〈n, n′, goal〉)
Important: h is onsistent ⇔ h is monotoneBeware: of onfusing terminology ̀onsistent' and m̀onotone'Values of h not neessarily dereasing/noninreasing
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Properties of h: Important results

• h onsistent ⇔ h monotone (Pearl 84)

• h onsistent ⇒ h admissible (AIMA, Exerise 4.7)onsisteny is striter than admissibility

• h onsistent ⇒ f is nondereasing

f(n′) = g(n′)+h(n′) = g(n)+c(n, a, n′)+h(n′) ≥ g(n)+h(n) = f(n)

• h onsistent ⇒ A∗ using Graph-Searh is optimally e�ient

B.Y.Choueiry
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Pathmax equation You may ignore this slideMonotoniity of f : values along a path are nondereasingWhen f is not monotoni, use pathmax equation

f(n′) = max (f(n), g(n′) + h(n′))A∗ never dereases along any path out from root

n

n’

g(n) = 3
h(n) = 4

g(n’) = 4
h(n’) = 2Pathmax

• guarantees f nondereasing

• does not guarantee h onsistent

• does not guarantee A∗ + Graph-Searh is optimally e�ient

B.Y.Choueiry

28
Instrutor'snotes#7
February19,2008



'&

$%

Summarizing de�nitions for A∗

• A∗ is a best-�rst searh that expands the node in the fringewith minimal f(n) = g(n) + h(n)

• An admissible funtion h never overestimates the distane tothe goal.

• h admissible ⇒ A∗ is omplete, optimal, optimally e�ientusing Tree-Searh

• h onsistent ⇔ h monotone

h onsistent ⇒ h admissible

h onsistent ⇒ f nondereasing

• h onsistent ⇒ A∗ remains optimal using Graph-Searh

B.Y.Choueiry
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Admissible heuristi funtionsExamples

• Route-�nding problems: straight-line distane

• 8-puzzle:8<
:

h1(n) = number of misplaed tiles

h2(n) = total Manhattan distane

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

h1(S) = ?

h2(S) = ?

B.Y.Choueiry
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Performane of admissible heuristi funtions
Two riteria to ompare admissible heuristi funtions:1. E�etive branhing fator: b∗2. Dominane: number of nodes expanded

B.Y.Choueiry
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E�etive branhing fator b∗

� The heuristi expands N nodes in total� The solution depth is d

−→ b∗ is the branhing fator had the tree been uniform

N = 1 + b∗ + (b∗)2 + . . . + (b∗)d =
(b∗)d+1 − 1

b∗ − 1� Example: N=52, d=5 → b∗ = 1.92

B.Y.Choueiry
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DominaneIf h2(n) ≥ h1(n) for all n (both admissible)then h2 dominates h1 and is better for searhTypial searh osts: nodes expandedSol. depth IDS A∗(h1) A∗(h2)

d = 12 3,644,035 227 73

d = 24 too many 39,135 1,641A∗ expands all nodes f(n) < C∗ ⇒ g(n) + h(n) < C∗

⇒h(n) < C∗ − g(n)If h1 ≤ h2, A∗ with h1 will always expand at least as many (if notmore) nodes than A∗ with h2

−→ It is always better to use a heuristi funtion withhigher values, as long as it does not overestimate (remainsadmissible)

B.Y.Choueiry
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How to generate admissible heuristis?

→ Use exat solution ost of a relaxed (easier) problemSteps:� Consider problem P� Take a problem P ′ easier than P� Find solution to P ′� Use solution of P ′ as a heuristi for P

B.Y.Choueiry
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Relaxing the 8-puzzle problemA tile an move mode square A to square B ifA is (horizontally or vertially) adjaent to B and B is blank
1. A tile an move from square A to square B if A is adjaent to BThe rules are relaxed so that a tile an move to any adjaentsquare: the shortest solution an be used as a heuristi(≡ h2(n))2. A tile an move from square A to square B if B is blankGashnig heuristi (Exerie 4.9, AIMA, page 135)3. A tile an move from square A to square BThe rules of the 8-puzzle are relaxed so that a tile an moveanywhere: the shortest solution an be used as a heuristi(≡ h1(n))
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An admissible heuristi for the TSP
Let path be any struture that onnets all ities

=⇒ minimum spanning tree heuristi (polynomial)(Exerie 4.8, AIMA, page 135)

B.Y.Choueiry
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Combining several admissible heuristi funtions
We have a set of admissible heuristis h1, h2, h3, . . . , hm but noheuristi that dominates all others, what to do?

−→ h(n) = max(h1(n), h2(n), . . . , hm(n))

h is admissible and dominates all others.

→ Problem:Cost of omputing the heuristi (vs. ost of expanding nodes)

B.Y.Choueiry
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Using subproblems to derive an admissible heuristi funtionGoal: get 1, 2, 3, 4 into their orret positions, ignoring the`identity' of the other tiles

Start State Goal State

1

2

3

4

6

8

5

21

3 6

7 8

54

Cost of optimal solution to subproblem used as a lower bound(and is substantially more aurate than Manhattan distane)Pattern databases:

• Identify patterns (whih represent several possible states)

• Store ost of exat solutions of patterns

• During searh, retrieve ost of pattern and use as a (tight)estimateCost of building the database is amortized over t̀ime'

B.Y.Choueiry
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Iterative improvement (a.k.a. loal searh)

−→ Sometimes, the p̀ath' to the goal is irrelevantonly the state desription (or its quality) is needed
Iterative improvement searh

• hoose a single urrent state, sub-optimal

• gradually modify urrent state

• generally visiting ǹeighbors'

• until reahing a near-optimal stateExample: omplete-state formulation of N -queens

B.Y.Choueiry
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Main advantages of loal searh tehniques
1. Memory (usually a onstant amount)2. Find reasonable solutions in large spaeswhere we annot possibly searh the spae exhaustively3. Useful for optimization problems:best state given an objetive funtion (quality of the goal)
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Intuition: state-sape landsape

evaluation

current
state

• All states are layed up on the surfae of a landsape

• A state's loation determines its neighbors (where it an move)

• A state's elevation represents its quality (value of objetivefuntion)

• Move from one neighbor of the urrent state to another stateuntil reahing the highest peak

B.Y.Choueiry
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Two major lasses1. Hill limbing (a.k.a. gradient asent/desent)

→ try to make hanges to improve quality of urrent state2. Simulated Annealing (physis)

→ things an temporarily get worse
Others: tabu searh, loal beam searh, geneti algorithms, et.

−→ Optimality (soundness)? Completeness?

−→ Complexity: spae? time?

−→ In pratie, surprisingly good.. (eroding myth)

B.Y.Choueiry
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Hill limbingStart from any state at random and loop:Examine all diret neighborsIf a neighbor has higher value then move to it else exit

evaluation

current
state

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Problems: 8

>

>

<

>

>

:

Loal optima: (maxima or minima) searh haltsPlateau: �at loal optimum or shoulderRidge

B.Y.Choueiry
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PlateauxAllow sideway moves

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

• For shoulder, good solution

• For �at loal optima, may result in an in�nite loopLimit number of moves

B.Y.Choueiry
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Ridges
Sequene of loal optima that is di�ult to navigate

B.Y.Choueiry

45
Instrutor'snotes#7
February19,2008

'&

$%

Variants of Hill Climbing

• Stohasti hill limbing: random walkChoose to disobey the heuristi, sometimesParameter: How often?

• First-hoie hill limbingChoose �rst best neighbor examinedGood solution when we have too many neighbors

• Random-restart hill limbingA series of hill-limbing searhes from random initial states

B.Y.Choueiry
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Random-restart hill-limbing

→ When HC halts or no progress is madere-start from a di�erent (randomly hosen) startingsave best results found so far

→ Repeat random restart- for a �xed number of iterations, or- until best results have not been improved for a ertainnumber of iterations
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Simulated annealing (I)Basi idea: When stuk in a loal maximum allow few stepstowards less good neighbors to esape the loal maximumStart from any state at random, start ount down and loopuntil time is over:Pik up a neighbor at randomSet ∆E = value(neighbor) - value(urrent state)If ∆E>0 (neighbor is better)then move to neighborelse ∆E<0 move to it with probability < 1
Transition probability ≃ e∆E/T

8

<

:

∆E is negativeT: ount-down timeas time passes, less and less likely to make the move towardsùnattrative' neighbors
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Simulated annealing (II)
Analogy to physis:Gradually ooling a liquid until it freezesIf temperature is lowered su�iently slowly, materialwill attain lowest-energy on�guration (perfet order)

Count down ←→ TemperatureMoves between states ←→ Thermal noiseGlobal optimum ←→ Lowest-energy on�guration

B.Y.Choueiry
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How about deision problems?
Optimization problems Deision problemsIterative improvement ←→ Iterative repairState value ←→ Number of onstraints violatedSub-optimal state ←→ Inonsistent stateOptimal state ←→ Consistent state
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Loal beam searh

• Keeps trak of k states

• Mehanism:Begins with k statesAt eah step, all suessors of all k states generatedGoal reahed? Stop.Otherwise, selets k best suessors, and repeat.

• Not exatly a k restarts: k runs are not independent

• Stohasti beam searh inreases diversity
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Geneti algorithms

• Basi onept: ombines two (parent) states

• Mehanism:Starts with k random states (population)Enodes individuals in a ompat representation (e.g., a stringin an alphabet)Combines partial solutions to generate new solutions (nextgeneration)

+ =
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Important omponents of a geneti algorithm

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

32252124

24752411

32748152

24415417

24748552

32752411

24415124

32543213

• Fitness funtion ranks a state's quality, assigns probability forseletion

• Seletion randomly hooses pairs for ombinations dependingon �tness

• Crossover point randomly hosen for eah individual, o�springsare generated

• Mutation randomly hanges a state
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