
Spring Semester, 2008 B.Y. Choueiry
CSCE 421/821: Foundations of Constraint Processing

Homework 5

Assigned: Wednesday, April 9, 2008

Due: Wednesday, April 16, 2008

Total value: 100 points + 30 points bonus.

Notes: This homework must be done individually. If you receive help from anyone, you must

clearly acknowledge it. Always acknowledge sources of information (URL, book, class notes,
etc.). Please inform instructor quickly about typos or other errors.

Contents

1 (8 points) Temporal network 2

2 (20 points) A simple application of path-consistency 2

3 (6 points) Tree graph 2

4 (10 points + bonus 5 points) Vacation house 3

5 (31 points) Crossword Puzzle 4

6 (25 points + bonus 25 points) A crypto-arithmetic puzzle 5

1

1 (8 points) Temporal network

Courtesy of Rina Dechter

Consider the following constraint satisfaction problem with 8 variables.

{ 1, 2, 3, 4,
5, 6, 7, 8 }

{ 1, 2, 3, 4,
5, 6, 7, 8 } { 1, 2, 3, 4,

5, 6, 7, 8 }

{ 1, 2, 3, 4,
5, 6, 7, 8 }

{ 1, 2, 3, 4,
5, 6, 7, 8 }

{ 1, 2, 3, 4,
5, 6, 7, 8 }

{ 1, 2, 3, 4,
5, 6, 7, 8 }

{ 1, 2, 3, 4,
5, 6, 7, 8 }

V

V

V
V

V

V

V

V

1

2 3

4

5

6

7

8

1. Show the graph of the equivalent arc-consistent problem. (4 points)

2. Show the graph of the equivalent path-consistent problem. (4 points)
Don’t forget to generate the complete network.

2 (20 points) A simple application of path-consistency

Consider a CSP with the three variables x, y, and z, each with the domain {1, 2, 3, 4, 5}, and the
following three symmetric constraints:

Cx,y =













1 0 0 1 1
0 1 0 0 1
1 1 0 0 0
0 0 1 1 1
1 1 1 0 1













Cy,z =













1 1 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1













Cx,z =













1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1













Define the domains of the variables as vectors. Give the six constraints (Cx, Cy, Cz, Cx,y, Cy,z,
Cx,z) that result from applying PC-1 to the CSP. Follow PC-1 as closely as possible and document
the application of each constraint-filtering operation you apply.

3 (6 points) Tree graph

Consider a constraint graph structured as a tree, any tree. Apply the procedure for finding the
width of this graph (will be discussed in class).

1. (3 points) What is the width of this graph?

2. (3 points) State and demonstrate a theorem about the width of a tree-structured graph.

2

U13 U14

U21

U31

U41

U11 U12

U22 U23 U24

U32 U33 U34

U42 U43 U44

Front Entry

Back Entry

4 (10 points + bonus 5 points) Vacation house

The diagram below is the layout grid for a group vacation-hall. Each square in the grid is a unit. If
a room takes up more than two units, the two units assigned must be adjacent (i.e., share a wall).
You need to assign the functionality to each unit so that the architect can finish the details. There
are sixteen units in the grid. The shaded area represents the halls. Use the following information
to help you model the CSP.

• The kitchen takes up two units and should be at the far back of the house.

• The dining hall takes up two units and must be next to the kitchen.

• There are six bedrooms, each of one unit. The bedrooms must be clustered.

• The billard room (1 unit) must be next to the lounge (2 units).

• The Library (1 unit) must be at the front of the building and must have a window.

• Half of the bedrooms must have windows.

• The billard room and exercise room (each of 1 unit) should not be next to the bedrooms and
should both have windows.

• The office (one unit) must be adjacent to the front hall entry.

1. (3 points) Give the variables and their domains.

3

2. (3 points) What are the assumptions that you must make to complete the model, there are
at least five. Discuss three of them.

3. (2 points) Give, in extension, the most restrictive unary constraint in your model (i.e., this
is the constraint that most reduces the domain of the variable to which it applies).

4. (2 points) Choose a binary constraint and give its definition in intension, using set notation
and proper constraint labeling. When more than one binary constraints exist between two
given nodes, you must provide the resulting constraint that satisfies them.

5. (Bonus 5 points) Discuss how unary constraints can be combined with binary constraints
to tighten the binary constraints at the preprocessing stage, before search. Give an example
of this situation with a unary constraint and a binary constraint in your model, showing, in
extension, the effect on the binary constraint both before and after filtering.

5 (31 points) Crossword Puzzle

Consider the list of words:

aft laser
ale lee
eel line
heel sails
hike sheet
hoses steer
keel tie
knot

for the crossword puzzle:

5

3
1

4

7

2

8

6

The numbers 1, 2, . . ., 8 in the crossword puzzle correspond to the words that will start at those
locations. The arrows correspond to the direction of the alignment of the letters in the words. Each
word appears at most in the puzzle.

4

1. (18 points) Model this puzzle as a binary CSP. State what are the variables, their respective
domains, and the binary constraints between variables.
Hint: model every variable as a vector (i.e., one dimension array) and express the constraints
as an equality between the respective positions of two arrays.

2. (1 points) Draw the constraint graph.

3. (10 points) Make this CSP arc-consistent.

4. (2 points) Give the size of the CSP before and after enforcing arc-consistency.

6 (25 points + bonus 25 points) A crypto-arithmetic puzzle

Consider the crypto-arithmetic puzzle shown below.

• You are asked to replace each letter by a different digit from 0 to 9.

• No leading zeros are allowed.

• When each letter is replaced by the appropriate number, this cryptogram represents a correct
addition problem:

S E N D
+ M O R E
M O N E Y

1. Model this puzzle as a CSP. (20 points)

List the variables, their domains, and the constraints. Specify the constraint definitions in
intension. [Hints: (1) In addition to each letter being a variable, you need to account for the
carries. (2) The CSP is not necessarily binary.]

2. Draw the constraint network of your model. (5 points)

Label the nodes with the domains of the variables (in extension), and the constraints with
their definitions (in intension).

3. Solve the puzzle. (Bonus: 25 points)

Depending on how you model the puzzle, you may be able to solve it with simple consistency
checking on likely non-binary constraints (e.g., node, relational arc-consistency, and relational
path-consistency) or may need to simulate a backtrack search. The former may be useful
when your model has several constraints of arity 5 or less, the latter may be necessary when
your model has one constraint of large arity. (We advise you to adopt the former approach.)

5

• If your model lends itself to consistency checking, then step through a consistency check-
ing process showing which constraint is checked at each step and how the domains of
the applicable variables are updated. Keep in mind that you do not need to visit all the
constraints once before you can ‘come back’ to a given constraint.

• Otherwise, show how you can solve this problem with a backtrack search with a full
look-ahead technique (i.e., applying the look-ahead strategy known as Maintaining Arc-
Consistency, MAC).

Relational consistency

It may be useful to understand the relational-consistency methods in order to solve the crypto-
arithmetic puzzle using constraint propagation only (i.e., without search). Refer to Chapter 8 of
Dechter’s textbook to learn the details of advanced consistency concepts and methods. In class
we discussed arc-consistency and path-consistency in great detail in the context of binary con-
straints. In the context of non-binary constraints, these concepts need to be generalized to rela-
tional arc-consistency (a.k.a. relational 1-consistency), relational path-consistency (a.k.a. relational
2-consistency), and Generalized Arc-Consistence (a.k.a. GAC and relational (1,1)consistency). Be-
low is a summary of the class discussion.

The goal of arc consistency in binary CSPs is to update the domain of each of the variables
to which it applies. For non-binary constraints, Generalized Arc-Consistency can be achieved by
direct application of the Waltz algorithm (see Lecture slides 4). The two procedures of the Waltz
algorithms Revise and Refine ensure that, for a given constraint, every value of the domain of every
variable is supported according to the constraint by some values in the domains of the remaining
variables. For example, in Fig 1, if the constraint Cx is defined such as V1 + 2V2 + V + 3 = V4,
then we consider all combinations of tuples for these variables, remove the combinations that do
not satisfy the constraints, then remove from the domains of the variables those values that do not
appear in any acceptable combination.

1V

V2

1V

V2

Cy

Cz

C t

Variable Constraint

V3

V4

V3

V4

Cx

Figure 1: Left: Generalized Arc-Consistency. Right: Relational path-consistency.

Another extension of arc consistency to non-binary constraints can be seen as guaranteeing
that any consistent partial solution to all but one of the variables in the scope of the constraint

6

can be extended to this last variable. This property is called relational 1-consistency or relational
arc-consistency.

The goal of path consistency for binary constraints is to combine two constraints C1 an C2 and
induce a new constraint C3 between the variables that are not in the scope of both C1 an C2. The
generalization of the path consistency in binary CSPs to relational path-consistency in non-binary
CSPs (a.k.a. relational 2-consistency) requires, for two non-binary constraints Cy an Cz, every tuple
of length equal (|scope(Cy) ∪ scope(Cz)| -1) that is consistent with Cy and Cz, simultaneously, can
be extended to the last variable in the scope(Cy) ∪ scope(Cz). Generally speaking, enforcing this
consistency property may be require adding constraints of arity (|scope(Cy) ∪ scope(Cz)| -1).

In the example of Figure 1, the scope of Ct is {V1, V2, V4}. In the case of algebraic expression,
this can be achieved by simple elimination. For example, the two constraints:

Cy : V1 + V2 > V3 (1)

Cz : V3 + 10 > V4 (2)

yield the following induced constraint

Ct : V1 + V2 + 10 > V4. (3)

7

