Spring 2006

Homework 9

Assigned on: Monday April 17, 2005.

Due: Friday April 21, 2005.

This is a pen-and-paper homework, to be returned in class. The whole homework is worth 105 points.

1. Using the inference rules for logic (10 points) prove that " $\exists xZ(x)$ follows from the givens." Be sure to justify your steps by stating the inference rule used, along with the previous line(s) to which it was applied and the unifications used.

(a)	P(1)	given
(b)	$W(1) \wedge W(2) \wedge W(3)$	given
(c)	$\forall x [P(x) \Rightarrow \neg R(x)]$	given
(d)	$\forall x [Q(x) \lor R(x)]$	given
(e)	$\forall x [(Q(x) \land W(x)) \Rightarrow Z(x)]$	given
2. AIMA 8.4, page 268.		$(2 {\rm points})$
3. AIMA 8.6, page 268.		$(22 {\rm points})$
4. AIMA 8.7, page 269.		(4 points)
5. Axioms in FOL (Adapted from AIMA, first edition)		$(15 {\rm points})$

Using the following: Child(x,y), Sibling(x,y), Female(x), Male(x), and Spouse (x, y):

- (10 points) Write axioms describing the predicates: GrandChild, GreatGrandParent, Brother, Sister, Daughter, Son, Aunt, Uncle, BrotherInLaw, SisterInLaw, and FirstCousin. We want these axioms to be definitions, so use ⇔ instead of ⇒.
- (5 points) Knowing that a second cousin is a child of one's parent first cousin, write the definition of a N^{th} -cousin, as a recursive expression in terms of the predicates defined above. Hint: Let N^{th} -cousin be a ternary predicate, that takes as input n, and two persons p_1 and p_2 .

6. AIMA 9.3, page 315.	$(3 ext{ points})$
7. AIMA 9.4, page 316.	(4 points)

- 8. AIMA 9.9, page 316.
- 9. AIMA 9.10, page 317.

For question (d), it is useful to check the following reference: Smith, D.E., Genesereth, M.R., and Ginsberg, M.L. (1986). *Controlling recursive inference*. Artificial Intelligence, Volume 30 (3), pages 343–389. (Page 1036, AIMA2e)

10. First-Order Logic

Consider the following axioms:

- (a) Anyone who rides any Harley is a rough character.
- (b) Every biker rides [something that is] either a Harley or a BMW.
- (c) Anyone who rides any BMW is a yuppie.
- (d) Every yuppie is a lawyer.
- (e) Any nice girl does not date anyone who is a rough character.
- (f) Mary is a nice girl, and John is a biker.
- (g) (Conclusion) If John is not a lawyer, then Mary does not date John.
 - Choose appropriate predicates to write the above axioms in first-order logic, clearly indicating the arguments and arity of each predicate: (2 points)
 - Write each of the above axioms in first-order logic. Use scratch paper if necessary, and *neatly* report your results below. (10 points)
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)
 - (f)
 - (g)

(12 points)

(12 points)

(20 points)

- Transform each of the above sentences into a conjunctive normal form. Clearly state the Skolem functions and clearly number the statements. (4 points)
- Establish the conclusion using the axioms by applying refutation resolution. Clearly show the variable bindings at each step and clearly number the statements.

(4 points)

Negation of conclusion: