CSE 310 – Homework 0

Chris Bourke

Fall 2004

Problem: (Levitin 2.1.1) For each of the following algorithms, indicate (i) a natural size matrix for its inputs; (ii) its basic operation; (iii) whether the basic operation count can be different for inputs of the same size.

a. Computing the sum of n numbers

Answer:

- i. n
- ii. addition of two numbers
- iii. no
- b. Computing n!

Answer:

- i. $\lceil \log n \rceil$
- ii. Multiplication of two integers

iii. no

c. Finding the largest element in a list of n numbers

Answer:

- i. n
- ii. Comparison of two numbers
- iii. no

Problem: Prove that $\frac{n(n^2)}{2} \in \Omega(n)$

Answer: We have the following theorem from Levitin, page 57:

Theorem 1. Let f(n) and g(n) be two monotonically increasing functions, then

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 \quad \Rightarrow f(n) \in \mathcal{O}(g(n)) \\ c \quad \Rightarrow f(n) \in \Theta(g(n)) \\ \infty \quad \Rightarrow f(n) \in \Omega(g(n)) \end{cases}$$

We set up our limit appropriately:

$$\lim_{n\to\infty}\frac{\frac{n(n-1)}{2}}{n}=n-1=\infty$$

Therefore, by Theorem $\ref{eq:reform},\,\frac{n(n^2)}{2}\in\Omega(n)$

Problem: Give an algorithm to compute the sum of n integers stored in an array \mathcal{A} .

Answer: The following algorithm computes the sum:

SUMMATION($\mathcal{A}[0...n-1]$) INPUT: an integer array \mathcal{A} OUTPUT: the summation $\sum_{i=0}^{n-1} \mathcal{A}[i]$ sum = 0 for i = 0...(n-1)sum = sum + $\mathcal{A}[i]$ return sum

Compiling Your Document

Now that our document is finished, we need to compile it. If you are on CSE or any other system that has IaT_EX installed, then you compile this document from the command line as follows: latex hw_example.tex

IATEX will do its thing and report any errors that you may have, otherwise it will successfully compile in to a dvi file named hw_example.dvi. At this point you have several options. You can convert the dvi file into a pdf file or a postscript file by using either dvipdf or dvips respectively. Another alternative is to use pdflatex instead of latex, which automatically outputs a pdf file rather than a dvi file.

If you have labels like our label, \label{theorem:asymptotics}, you will need to run latex or pdflatex 2 or three times to compile the proper references.

Additional Tools

You can use a program called <code>ispell</code> from the command prompt to spell check your document. Conveniently, <code>ispell</code> ignores LAT_EX markup!

If you are just getting used to the linux environment, one of the best text editors for IAT_EX besides emacs and xemacs is nedit. This text editor recognizes IAT_EX markup uses font and color offsets to help you out.

Additional Resources

The main source for \squareTEX resources is the TEX Users Group: http://www.tug.org in particular, check out their page for beginners, Getting Started With \squareTEX at http://www.tug.org/begin.

One of the best tutorials is the Not So Short Introduction to ${\mathbb A} T_{\!E\!} \! X$ 2e which can be found at

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

Good Luck on your LATEXing