Recursive Algorithms

A recursive algorithm is one in which objects are defined in terms of other objects of the same type.

Advantages:

- Simplicity of code
- Easy to understand

Disadvantages:

- Memory
- Speed
- Possibly redundant work

Tail recursion offers a solution to the memory problem, but really, do we need recursion?

Motivating Example

Factorial

Recall the factorial function.

\[n! = \begin{cases}
 1 & \text{if } n = 1 \\
 n \cdot (n - 1)! & \text{if } n > 1
\end{cases} \]

Consider the following (recursive) algorithm for computing \(n! \):

```
Algorithm (FACTORIAL)

INPUT : n ∈ N
OUTPUT : n!
if n = 1 then
  return 1
end
else
  return Factorial(n - 1) × n
end
```

Recurrence Relations I

Definition

A recurrence relation for a sequence \(\{a_n\} \) is an equation that expresses \(a_n \) in terms of one or more of the previous terms in the sequence,

\[a_0, a_1, \ldots, a_{n-1} \]

for all integers \(n \geq n_0 \) where \(n_0 \) is a nonnegative integer.

A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
Recurrence Relations II

Definition

Consider the recurrence relation: \(a_n = 2a_{n-1} - a_{n-2} \).
It has the following sequences \(a_n \) as solutions:

1. \(a_n = 3n \),
2. \(a_n = 2^n \), and
3. \(a_n = 5 \).

Initial conditions + recurrence relation uniquely determine the sequence.

Recurrence Relations III

Definition

Example

The Fibonacci numbers are defined by the recurrence,
\[
F(n) = F(n-1) + F(n-2)
\]
Initial conditions:
\[
F(0) = 1, \quad F(1) = 1
\]
The solution to the Fibonacci recurrence is
\[
f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]
(your book derives this solution).

Recurrence Relations IV

Definition

More generally, recurrences can have the form
\[
T(n) = \alpha T(n - \beta) + f(n), \quad T(\delta) = c
\]
or
\[
T(n) = \alpha T \left(\frac{n}{\beta} \right) + f(n), \quad T(\delta) = c
\]

Note that it may be necessary to define several \(T(\delta) \), initial conditions.

Recurrence Relations V

Definition

The initial conditions specify the value of the first few necessary terms in the sequence. In the Fibonacci numbers we needed two initial conditions, \(F(0) = F(1) = 1 \) since \(F(n) \) was defined by the two previous terms in the sequence.

Initial conditions are also known as boundary conditions (as opposed to the general conditions).

From now on, we will use the subscript notation, so the Fibonacci numbers are
\[
\begin{align*}
 f_n &= f_{n-1} + f_{n-2} \\
 f_1 &= 1 \\
 f_0 &= 1
\end{align*}
\]

Recurrence Relations VI

Definition

Recurrence relations have two parts: recursive terms and non-recursive terms.
\[
T(n) = \underbrace{2T(n - 2)}_{\text{recursive}} + \underbrace{n^2 - 10}_{\text{non-recursive}}\]

Recursive terms come from when an algorithm calls itself.
Non-recursive terms correspond to the “non-recursive” cost of the algorithm—work the algorithm performs within a function.

We’ll see some examples later. First, we need to know how to solve recurrences.

Solving Recurrences

There are several methods for solving recurrences.

- Characteristic Equations
- Forward Substitution
- Backward Substitution
- Recurrence Trees
- Maple!
Linear Homogeneous Recurrences

Definition
A linear homogeneous recurrence relation of degree \(k \) with constant coefficients is a recurrence relation of the form

\[
a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}
\]

with \(c_1, \ldots, c_k \in \mathbb{R}, c_k \neq 0. \)

- Linear: RHS is a sum of multiples of previous terms of the sequence (linear combination of previous terms). The coefficients are all constants (not functions depending on \(n \)).
- Homogeneous: no terms occur that are not multiples of the \(a_j \)'s.
- Degree \(k \): \(a_n \) is expressed in terms of \(k \) terms of the sequence.

Solving Linear Homogeneous Recurrences I

We want a solution of the form \(a_n = r^n \) where \(r \) is some (real) constant.

We observe that \(a_n = r^n \) is a solution to a linear homogeneous recurrence if and only if

\[
r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}
\]

We can now divide both sides by \(r^{n-k} \), collect terms, and we get a \(k \)-degree polynomial.

\[
r^k - c_1 r^{k-1} - c_2 r^{k-2} - \cdots - c_{k-1} r - c_k = 0
\]

Solving Linear Homogeneous Recurrences II

This is called the characteristic equation of the recurrence relation.

The roots of this polynomial are called the characteristic roots of the recurrence relation. They can be used to find solutions (if they exist) to the recurrence relation. We will consider several cases.

Second Order Linear Homogeneous Recurrences

A second order linear homogeneous recurrence is a recurrence of the form

\[
a_n = c_1 a_{n-1} + c_2 a_{n-2}
\]

Theorem (Theorem 1, p414)

Let \(c_1, c_2 \in \mathbb{R} \) and suppose that \(r^2 - c_1 r - c_2 = 0 \) is the characteristic polynomial of a 2nd order linear homogeneous recurrence which has two distinct \(^1\) roots, \(r_1, r_2 \).

Then \(\{a_n\} \) is a solution if and only if

\[
a_n = \alpha_1 r_1^n + \alpha_2 r_2^n
\]

for \(n = 0, 1, 2, \ldots \) where \(\alpha_1, \alpha_2 \) are constants dependent upon the initial conditions.

\(^1\)we discuss how to handle this situation later.

Example

Find a solution to

\[
a_n = 5a_{n-1} - 6a_{n-2}
\]

with initial conditions \(a_0 = 1, a_1 = 4 \)

- The characteristic polynomial is

\[
r^2 - 5r + 6
\]

- Using the quadratic formula (or common sense), the root can be found;

\[
r^2 - 5r + 6 = (r - 2)(r - 3)
\]

so \(r_1 = 2, r_2 = 3 \)
Now we can plug in the two initial conditions to get a system
of linear equations.

\[a_0 = \alpha_1(2)^0 + \alpha_2(3)^0 \]
\[a_1 = \alpha_1(2)^1 + \alpha_2(3)^1 \]

1 = \alpha_1 + \alpha_2 \quad (1)
4 = 2\alpha_1 + 3\alpha_2 \quad (2)

Using the 2nd-order theorem, we have a solution,

\[a_n = \alpha_1(2^n) + \alpha_2(3^n) \]

Solving the second, we get that \(\alpha_2 = \frac{3}{4} \)

And so the solution is

\[a_n = \frac{4^n}{4} + \frac{3}{4}n4^n \]

We should check ourselves.

What is the solution to the recurrence relation

\[a_n = 8a_{n-1} - 16a_{n-2} \]

with initial conditions \(a_0 = 1, a_1 = 7 \)?

The characteristic polynomial is

\[r^2 - 8r + 16 \]

Factoring gives us

\[r^2 - 8r + 16 = (r - 4)(r - 4) \]

so \(r = 4 \)

Second Order Linear Homogeneous Recurrences

Second Order Linear Homogeneous Recurrences

Example Continued

Using the 2nd-order theorem, we have a solution,

\[a_n = \alpha_1(2^n) + \alpha_2(3^n) \]

Now we can plug in the two initial conditions to get a system
of linear equations.

\[a_0 = \alpha_1(2)^0 + \alpha_2(3)^0 \]
\[a_1 = \alpha_1(2)^1 + \alpha_2(3)^1 \]

1 = \alpha_1 + \alpha_2 \quad (1)
4 = 2\alpha_1 + 3\alpha_2 \quad (2)

Solving for \(\alpha_1 = (1 - \alpha_2) \) in (1), we can plug it into the second.

4 = 2\alpha_1 + 3\alpha_2
4 = 2(1 - \alpha_2) + 3\alpha_2
2 = \alpha_2

Substituting back into (1), we get

\[\alpha_1 = -1 \]

Putting it all back together, we have

\[a_n = \alpha_1(2^n) + \alpha_2(3^n) \]
\[= -1 \cdot 2^n + 2 \cdot 3^n \]

Second Order Linear Homogeneous Recurrences

Example Continued

Example

Solve the recurrence

\[a_n = -2a_{n-1} + 15a_{n-2} \]

with initial conditions \(a_0 = 0, a_1 = 1 \).

If we did it right, we have

\[a_n = \frac{1}{8}(3)^n - \frac{1}{8}(-5)^n \]

How can we check ourselves?

Single Root Case

Recall that we can only apply the first theorem if the roots are
distinct, i.e. \(r_1 \neq r_2 \).

If the roots are not distinct \((r_1 = r_2) \), we say that one
characteristic root has multiplicity two. In this case we have to
apply a different theorem.

Theorem (Theorem 2, p416)

Let \(c_1, c_2 \in \mathbb{R} \) with \(c_2 \neq 0 \). Suppose that \(r^2 - c_1 r - c_2 = 0 \) has
only one distinct root, \(r_0 \). Then \(\{a_n\} \) is a solution to
\[a_n = c_1a_{n-1} + c_2a_{n-2} \]
if and only if
\[a_n = a_1r_0^n + a_2r_0^n \]
for \(n = 0, 1, 2, \ldots \) where \(a_1, a_2 \) are constants depending upon the
initial conditions.

Single Root Case

Example

What is the solution to the recurrence relation

\[a_n = 8a_{n-1} - 16a_{n-2} \]

with initial conditions \(a_0 = 1, a_1 = 7 \)?

The characteristic polynomial is

\[r^2 - 8r + 16 \]

Factoring gives us

\[r^2 - 8r + 16 = (r - 4)(r - 4) \]

so \(r = 4 \)
General Linear Homogeneous Recurrences

There is a straightforward generalization of these cases to higher order linear homogeneous recurrences.

Essentially, we simply define higher degree polynomials.

The roots of these polynomials lead to a general solution.

The general solution contains coefficients that depend only on the initial conditions.

In the general case, however, the coefficients form a system of linear inequalities.

Theorem (Theorem 4, p418)

Let $c_1, \ldots, c_k \in \mathbb{R}$. Suppose that the characteristic equation

$$r^k - c_1 r^{k-1} - \cdots - c_{k-1} r - c_k = 0$$

has k distinct roots, r_1, \ldots, r_k. Then a sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \cdots + \alpha_k r_k^n$$

for $n = 0, 1, 2, \ldots$, where $\alpha_1, \alpha_2, \ldots, \alpha_k$ are constants.

General Linear Homogeneous Recurrences

Any Multiplicity

Theorem (Continued)

Then a sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

if and only if

$$a_n = (\alpha_{1,0} + \alpha_{1,1} n + \cdots + \alpha_{1,m_1-1} n^{m_1-1}) r_1^n +$$

$$+ (\alpha_{2,0} + \alpha_{2,1} n + \cdots + \alpha_{2,m_2-1} n^{m_2-1}) r_2^n +$$

$$+ \cdots +$$

$$+ (\alpha_{k,0} + \alpha_{k,1} n + \cdots + \alpha_{k,m_k-1} n^{m_k-1}) r_k^n$$

for $n = 0, 1, 2, \ldots$, where $\alpha_{i,j}$ are constants for $1 \leq i \leq t$ and $0 \leq j \leq m_i - 1$.

Linear Nonhomogeneous Recurrences

For recursive algorithms, cost functions are often not homogenous because there is usually a non-recursive cost depending on the input size.

Such a recurrence relation is called a linear nonhomogeneous recurrence relation.

Such functions are of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + f(n)$$

Linear Nonhomogeneous Recurrences

Here, $f(n)$ represents a non-recursive cost. If we chop it off, we are left with

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

which is the associated homogenous recurrence relation.

Every solution of a linear nonhomogeneous recurrence relation is the sum of a particular solution and a solution to the associated linear homogeneous recurrence relation.
Linear Nonhomogeneous Recurrences

Theorem (Theorem 5, p420)

If \(\{a_n^{(p)}\} \) is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients

\[
a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + f(n)
\]

then every solution is of the form \(\{a_n^{(p)} + a_n^{(h)}\} \), where \(\{a_n^{(h)}\} \) is a solution of the associated homogeneous recurrence relation

\[
a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}
\]

Linear Nonhomogeneous Recurrences

Theorem (Theorem 6, p421)

Suppose that \(\{a_n\} \) satisfies the linear nonhomogeneous recurrence relation

\[
a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + f(n)
\]

where \(c_1, \ldots, c_k \in \mathbb{R} \) and

\[
f(n) = (b_0 n^t + b_1 n^{t-1} + \cdots + b_t) \cdot s^n
\]

where \(b_0, \ldots, b_t, s \in \mathbb{R} \).

Linear Nonhomogeneous Recurrences

The examples in the text are quite good (see pp420–422) and illustrate how to solve simple nonhomogeneous relations.

We may go over more examples if you wish.

Also read up on generating functions in section 6.4 (though we may return to this subject).

However, there are alternate, more intuitive methods.

Other Methods

When analyzing algorithms, linear homogenous recurrences of order greater than 2 hardly ever arise in practice.

We briefly describe two “unfolding” methods that work for a lot of cases.

Backward substitution – this works exactly as its name implies: starting from the equation itself, work backwards, substituting values of the function for previous ones.

Recurrence Trees – just as powerful but perhaps more intuitive, this method involves mapping out the recurrence tree for an equation. Starting from the equation, you unfold each recursive call to the function and calculate the non-recursive cost at each level of the tree. You then find a general formula for each level and take a summation over all such levels.
Backward Substitution

Example

Give a solution to

\[T(n) = T(n-1) + 2n \]

where \(T(1) = 5 \).

We begin by unfolding the recursion by a simple substitution of the function values.

Observe that

\[T(n-1) = T((n-1)-1) + 2(n-1-1) = T(n-2) + 2(n-1) \]

Substituting this into the original equation gives us

\[T(n) = T(n-2) + 2(n-1) + 2n \]

Backward Substitution

Example – Continued

If we continue to do this, we get the following.

\[T(n) = T(n-i) + 2 n(i-1) + 2(i-1)(i-1+1) + 2n \]

Backward Substitution

Example

Give a solution to

\[T(n) = T(n-1) + 2n \]

where \(T(1) = 5 \).

We begin by unfolding the recursion by a simple substitution of the function values.

Observe that

\[T(n-1) = T((n-1)-1) + 2(n-1-1) = T(n-2) + 2(n-1) \]

Substituting this into the original equation gives us

\[T(n) = T(n-2) + 2(n-1) + 2n \]

Recurrence Trees

Example

The total value of the function is the summation over all levels of the tree:

\[T(n) = \sum_{i=0}^{\log_{\beta} n} \alpha^i \cdot f \left(\frac{n}{\beta^i} \right) \]

We consider the following concrete example.

Example

\[T(n) = 2T \left(\frac{n}{2} \right) + n, \quad T(1) = 4 \]
Maple and other math tools are great resources. However, they are not substitutes for knowing how to solve recurrences yourself. As such, you should only use Maple to check your answers. Recurrence relations can be solved using the `rsolve` command and giving Maple the proper parameters.

The arguments are essentially a comma-delimited list of equations: general and boundary conditions, followed by the "name" and variable of the function.