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Notes

Introduction I

“A proof is a proof. What kind of a proof? It’s a proof. A proof
is a proof. And when you have a good proof, it’s because it’s
proven.” –Jean Chrétien

“Mathematical proofs, like diamonds, are hard and clear, and
will be touched with nothing but strict reasoning.” –John Locke

Mathematical proofs are, in a sense, the only truly absolute knowledge we
can have. They provide us with a guarantee as well as an explanation (and
hopefully some deep insight).

Notes

Introduction II

Mathematical proofs are necessary in computer science for several reasons.

I An algorithm must always be proven correct.

I You may also want to show that its more efficient than other method.
This requires a proof.

I Proving certain properties of data structures may lead to new, more
efficient or simpler algorithms.

I Arguments may entail assumptions. It may be useful and/or
necessary to make sure these assumptions are actually valid.

Notes



Introduction
Terminology

I A theorem is a statement that can be shown to be true (via a proof).

I A proof is a sequence of statements that form an argument.

I Axioms or postulates are statements taken to be self-evident, or
assumed to be true.

I Lemmas and corollaries are also (certain types of) theorems. A
proposition (as opposed to a proposition in logic) is usually used to
denote a fact for which a proof has been omitted.

I A conjecture is a statement whose truth value is unknown.

I The rules of inferences are the means used to draw conclusions from
other assertions. These form the basis of various methods of proof.

Notes

Theorems
Example

Consider, for example, Fermat’s Little Theorem.

Theorem (Fermat’s Little Theorem)

If p is a prime which does not divide the integer a, then ap−1 = 1(mod p).

What is the assumption? Conclusion?

Notes

Proofs: A General How To I

An argument is valid if whenever all the hypotheses are true, the
conclusion also holds.

From a sequence of assumptions, p1, p2, . . . , pn, you draw the conclusion
p. That is;

(p1 ∧ p2 ∧ · · · ∧ pn) → q

Notes



Proofs: A General How To II

Usually, a proof involves proving a theorem via intermediate steps.

Example

Consider the theorem “If x > 0 and y > 0, then x + y > 0.” What are the
assumptions? Conclusion? What steps would you take?

Each step of a proof must be justified.

Notes

Rules of Inference

Recall the handout on the course web page http:
//www.cse.unl.edu/~cse235/files/LogicalEquivalences.pdf of
logical equivalences.

Table 2 contains a Cheat Sheet for Inference rules.

Notes

Rules of Inference
Modus Ponens

Intuitively, modus ponens (or law of detachment) can be described as the
inference, “p implies q; p is true; therefore q holds”.

In logic terms, modus ponens is the tautology

(p ∧ (p → q)) → q

Notation note: “therefore” is sometimes denoted ∴, so we have, p and
p → q, ∴ q.

Notes



Rules of Inference
Addition

Addition involves the tautology

p → (p ∨ q)

Intuitively, if we know p to be true, we can conclude that either p or q are
true (or both).

In other words, p ∴ p ∨ q.

Example

I read the newspaper today, therefore I read the newspaper or I ate
custard.1

1Note that these are not mutually exclusive.

Notes

Rules of Inference
Simplification

Simplification is based on the tautology

(p ∧ q) → p

so that we have p ∧ q, ∴ p.

Example

Prove that if 0 < x < 10, then x ≥ 0.

I 0 < x < 10 ≡ (x > 0) ∧ (x < 10)
I (x > 0) ∧ (x < 10) implies that x > 0 by simplification.

I x > 0 implies (x > 0) ∨ (x = 0) by addition.

I (x > 0) ∨ (x = 0) ≡ (x ≥ 0).

Notes

Rules of Inference
Conjunction

The conjunction is almost trivially intuitive. It is based on the tautology

((p) ∧ (q)) → (p ∧ q)

Note the subtle difference though. On the left hand side, we
independently know p and q to be true. Therefore, we conclude that the
right hand side, a logical conjunction is true.

Notes



Rules of Inference
Modus Tollens

Similar to modus ponens, modus tollens is based on the tautology(
¬q ∧ (p → q)

)
→ ¬p

In other words, if we know that q is not true and that p implies q then we
can conclude that p does not hold either.

Example

If you are a UNL student you are a cornhusker. Don Knuth was not a
cornhusker. Therefore, we can conclude that Knuth was not a UNL
student.

Notes

Rules of Inference
Contrapositive

The tautology
(p → q) → (¬q → ¬p)

is called the contrapositive.

If you are having trouble proving that p implies q in a direct manner, you
can try to prove the contrapositive instead!

Notes

Rules of Inference
Hypothetical Syllogism

Based on the tautology(
(p → q) ∧ (q → r)

)
→ (p → r)

Essentially, this shows that rules of inference are, in a sense, transitive.

Example

If you don’t get a job you won’t make any money. If you don’t make any
money, you will starve. Therefore, if you don’t get a job, you will starve.

Notes



Rules of Inference
Disjunctive Syllogism

A disjunctive syllogism is formed on the basis of the tautology(
(p ∨ q) ∧ ¬p

)
→ q

Reading this in English, we see that if either p or q hold and we know that
p does not hold; we can conclude that q must hold.

Example

The sky is either clear or cloudy. Well, it isn’t cloudy, therefore the sky is
clear.

Notes

Rules of Inference
Resolution

For resolution, we have the following tautology.(
(p ∨ q) ∧ (¬p ∨ r)

)
→ (q ∨ r)

Essentially, if we have two true disjunctions that have mutually exclusive
propositions, then we can conclude that the disjunction of the two
non-mutually exclusive propositions is true.

Notes

Example I

The best way to become accustomed to proofs is to see many examples.

To begin with, we give a direct proof of the following theorem.

Theorem

The sum of two odd integers is even.

Notes



Example I
Proof

Let n, m be odd integers. Every odd integer x can be written as
x = 2k + 1 for some other integer k. Therefore, let n = 2k1 + 1 and
m = 2k2 + 1. Then consider

n + m = (2k1 + 1) + (2k2 + 1)
= 2k1 + 2k2 + 1 + 1 Associativity/Commutativity
= 2k1 + 2k2 + 2 Algebra
= 2(k1 + k2 + 1) Factoring

By definition, 2(k1 + k2 + 1) is an even number, therefore, n + m is even.

Notes

Example II

Assume that the statements

I (p → q)
I (r → s)
I r ∨ p

to be true. Assume that q is false.

Show that s must be true.

Notes

Example II
Proof

Proof.

I Since p → q and ¬q are true, ¬p is true by modus tollens (i.e. p must
be false).

I Since r ∨ p and ¬p are true, r is true by disjunctive syllogism.

I Since r → s is true and r is true, s is true by modus ponens.

I Q.E.D.2

2Latin, “quod erat demonstrandum” meaning “that which was to be demonstrated”

Notes



If And Only If

If you are asked to show an equivalence (i.e. p ⇐⇒ q, “if and only if”),
you must show an implication in both directions.

That is, you can show (independently or via the same technique) that
p ⇒ q and q ⇒ p.

Example

Show that x is odd if and only if x2 + 2x + 1 is even.

Notes

If And Only If
Example Continued

Proof.

x is odd ⇐⇒ x = 2n + 1, n ∈ Z by definition
⇐⇒ x + 1 = 2n + 2 algebra
⇐⇒ x + 1 = 2(n + 1) factoring
⇐⇒ x + 1 is even by definition
⇐⇒ (x + 1)2 is even since x is even iff x2 is even
⇐⇒ x2 + 2x + 1 is even algebra

Notes

Fallacies

Even a bad example is worth something—it teaches us what not to do.

A theorem may be true, but a bad proof doesn’t testify to it.

There are three common mistakes (actually probably many more). These
are known as fallacies

I Fallacy of affirming the conclusion.(
q ∧ (p → q)

)
→ p

is not a tautology.

I Fallacy of denying the hypothesis.(
¬p ∧ (p → q)

)
→ ¬q

I Circular reasoning. Here, you use the conclusion as an assumption,
avoiding an actual proof.

Notes



Fallacies

Sometimes bad proofs arise from illegal operations rather than poor logic.
Consider this classically bad proof that 2 = 1:

Let a = b

a2 = ab Multiply both sides by a
a2 + a2 − 2ab = ab + a2 − 2ab Add (a2 − 2ab) to both sides
2(a2 − ab) = a2 − ab Factor, collect terms
2 = 1 Divide both sides by (a2 − ab)

So what’s wrong with the proof?

Notes

Proofs With Quantifiers

Rules of inference can be extended in a straightforward manner to
quantified statements.

I Universal Instantiation – Given the premise that ∀xP (x), and
c ∈ X (where X is the universe of discourse) we conclude that P (c)
holds.

I Universal Generalization – Here we select an arbitrary element in
the universe of discourse c ∈ X and show that P (c) holds. We can
therefore conclude that ∀xP (x) holds.

I Existential Instantiation – Given the premise that ∃xP (x) holds, we
simply give it a name, c and conclude that P (c) holds.

I Existential Generalization – Conversely, when we establish that
P (c) is true for a specific c ∈ X, then we can conclude that ∃xP (x).

Notes

Proofs With Quantifiers
Example

Example

Show that the premise “A car in this garage has an engine problem,” and
“Every car in this garage has been sold” imply the conclusion “A car
which has been sold has an engine problem.”

I Let G(x) be “x is in this garage.”

I Let E(x) be “x has an engine problem.”

I Let S(x) be “x has been sold.”

I The premises are as follows.

I ∃x(G(x) ∧ E(x))
I ∀x(G(x) → S(x))
I The conclusion we want to show is ∃x(S(x) ∧ E(x))

Notes



Proofs With Quantifiers
Example Continued

proof

(1) ∃x(G(x) ∧ E(x)) Premise
(2) G(c) ∧ E(c) Existential Instantiation of (1)
(3) G(c) Simplification from (2)
(4) ∀x(G(x) → S(x)) Second Premise
(5) (G(c) → S(c) Universal Instantiation from (4)
(6) S(c) Modus ponens from (3) and (5)
(7) E(c) Simplification from (2)
(8) S(c) ∧ E(c) Conjunction from (6), (7)
(9) ∃x(S(x) ∧ E(x)) Existential Generalization from (8) �

Notes

Types of Proofs

I Trivial Proofs

I Vacuous Proofs

I Direct Proofs

I Proof by Contrapositive (Indirect Proofs)

I Proof by Contradiction

I Proof by Cases

I Proofs of equivalence

I Existence Proofs (Constructive & Nonconstructive)

I Uniqueness Proofs

Notes

Trivial Proofs I

(Not trivial as in “easy”)

Trivial proofs: conclusion holds without using the hypothesis.

A trivial proof can be given when the conclusion is shown to be (always)
true. That is, if q is true then p → q is true.

Example

Prove that if x > 0 then (x + 1)2 − 2x > x2.

Notes



Trivial Proofs II

Proof.

Its easy to see that

(x + 1)2 − 2x = (x2 + 2x + 1)− 2x
= x2 + 1
≥ x2

and so the conclusion holds without using the hypothesis.

Notes

Vacuous Proofs

If a premise p is false, then the implication p → q is (trivially) true.

A vacuous proof is a proof that relies on the fact that no element in the
universe of discourse satisfies the premise (thus the statement exists in a
vacuum in the UoD).

Example

If x is a prime number divisible by 16, then x2 < 0.

No prime number is divisible by 16, thus this statement is true
(counter-intuitive as it may be)

Notes

Direct Proof

Most of the proofs we have seen so far are direct proofs.

In a direct proof, you assume the hypothesis p and give a direct series of
implications using the rules of inference as well as other results (proved
independently) to show the conclusion q holds.

Notes



Proof by Contrapositive
(Indirect Proofs)

Recall that p → q is logically equivalent to ¬q → ¬p. Thus, a proof by
contrapositive can be given.

Here, you assume that the conclusion is false and then give a series of
implications (etc.) to show that such an assumption implies that the
premise is false.

Example

Prove that if x3 < 0 then x < 0.

Notes

Proof by Contrapositive
Example

The contrapositive is “if x ≥ 0, then x3 ≥ 0.”

Proof.

If x = 0, then trivially, x3 = 0 ≥ 0.

x > 0 ⇒ x2 > 0
⇒ x3 ≥ 0

Notes

Proof by Contradiction

To prove a statement p is true, you may assume that it is false and then
proceed to show that such an assumption leads to a contradiction with a
known result.

In terms of logic, you show that for a known result r,

¬p → (r ∧ ¬r)

is true, which leads to a contradiction since (r ∧ ¬r) cannot hold.

Example

√
2 is an irrational number.

Notes



Proof by Contradiction
Example

Proof.

Let p be the proposition “
√

2 is irrational.” We start by assuming ¬p, and
show that it will lead to a contradiction.
√

2 is rational ⇒
√

2 = a
b , a, b ∈ R and have no common factor

(proposition r).

Squarring that equation: 2 = a2

b2
.

Thus 2b2 = a2, which implies that a2 is even.

a2 is even ⇒ a is even ⇒ a = 2c.

Thus, 2b2 = 4c2 ⇒ b2 is even ⇒ b is even.

Thus, a and b have a common factor 2 (i.e., proposistion ¬r).

¬p → r ∧ ¬r, which is a contridiction.

Thus, ¬p is false, so that
√

2 is irrational.

Notes

Proof by Cases

Sometimes it is easier to prove a theorem by breaking it down into cases
and proving each one separately.

Example

Let n ∈ Z. Prove that
9n2 + 3n− 2

is even.

Notes

Proof by Cases
Example

Proof.

Observe that 9n2 + 3n− 2 = (3n + 2)(3n− 1) is the product of two
integers. Consider the following cases.

Case 1: 3n + 2 is even. Then trivially we can conclude that 9n2 + 3n− 2
is even since one of its two factors is even.

Case 2: 3n + 2 is odd. Note that the difference between (3n + 2) and
(3n− 1) is 3, therefore, if (3n + 2) is odd, it must be the case that
(3n− 1) is even. Just as before, we conclude that 9n2 + 3n− 2 is even
since one of its two factors is even.

Notes



Existence & Uniqueness Proofs I

A constructive existence proof asserts a theorem by providing a specific,
concrete example of a statement. Such a proof only proves a statement of
the form ∃xP (x) for some predicate P . It does not prove the statement
for all such x.

A nonconstructive existence proof also shows a statement of the form
∃xP (x), but it does not necessarily need to give a specific example x.
Such a proof usually proceeds by contradiction—assume that
¬∃xP (x) ≡ ∀x¬P (x) holds and then get a contradiction.

Notes

Existence & Uniqueness Proofs II

A uniqueness proof is used to show that a certain element (specific or not)
has a certain property. Such a proof usually has two parts, a proof of
existence (∃xP (x)) and a proof of uniqueness (if x 6= y, then ¬P (y)).
Together, we have the following

∃x
(
P (x) ∧ ∀y(y 6= x → ¬P (y))

)

Notes

Counter Examples

Sometimes you are asked to disprove a statement. In such a situation, you
are actually trying to prove the negation.

With statements of the form ∀xP (x), it suffices to give a counter example
since the existence of an element x such that ¬P (x) is true proves that
∃x¬P (x) which is the negation of ∀xP (x).

Notes



Counter Examples
Example

Example

Disprove: n2 + n + 1 is a prime number for all n ≥ 1

A simple counter example is n = 4. Then
n2 + n + 1 = 42 + 4 + 1 = 21 = 3 · 7 which is clearly not prime.

Notes

Counter Examples
A word of caution

No matter how many you give, you can never prove a theorem by giving
examples (unless the universe of discourse is finite—why?).

Counter examples can only be used to disprove universally quantified
statements.

Do not give a proof by simply giving an example.

Notes

Proof Strategies I

If there were a single strategy that always worked for proofs, mathematics
would be easy.

The best advice I can give is:

I Don’t take things for granted, try proving assertions first before you
take them as fact.

I Don’t peek at proofs. Try proving something for yourself before
looking at the proof.

I The best way to improve your proof skills is practice.

Notes



Questions?

Notes


