Nebiaska

Lincoln

Number
Theory:
Applications

Number Theory: Applications

CSE235

Introduction
Hash

Fungites Slides by Christopher M. Bourke
Peeudorandom Instructor: Berthe Y. Choueiry

Numbers

Representation
of Integers

Euclid's
Algorithm

CRT. Spring 2006

Cryptography

Computer Science & Engineering 235
Introduction to Discrete Mathematics
Sections 2.4-2.6 of Rosen

mailto:cse235@cse.unl.edu

\areeM Number Theory: Applications

Lincoln

Number
Theory:
Applications

CSE235
Results from Number Theory have countless applications in

mathematics as well as in practical applications including
Hash
Functions security, memory management, authentication, coding theory,
s ctc. We will only examine (in breadth) a few here.

Numbers

Introduction

Representation
of Integers

Hash Functions

Euclid's
Algorithm

Pseudorandom Numbers

CRT. Fast Arithmetic Operations

Cryptography

Cryptography

Nebisda Hash Functions |

Lincoln

Number
Theory:
Applications

CSE235

Introduction Some notation: Z,, = {0,1,2,...,m —2,m — 1}
Hash
Functions

Define a hash function h : Z — Z,, as
Pseudorandom
Numbers

Representation h(k) = k mod m

of Integers

Aot That is, h maps all integers into a subset of size m by

CRT. computing the remainder of k/m.

Cryptography

Nebisidia Hash Functions I

Lincoln

Number
Theory:
Applications

o In general, a hash function should have the following properties

Introduction @ It must be easily computable.

Hash
Functions

@ It should distribute items as evenly as possible among all

Pseudorandom values addresses. To this end, m is usually chosen to be a
Numbers

. A prime number. It is also common practice to define a hash
epresentation . . .

of Integers function that is dependent on each bit of a key

Euclid's

Algorithm @ It must be an onto function (surjective).

C.R.T.
Hashing is so useful that many languages have support for

hashing (perl, Lisp, Python).

Cryptography

Nebisda Hash Functions IlI

Lincoln

Number
Theory:
Applications

However, the function is clearly not one-to-one. When two

CSE235 . ..
elements, x1 # xo hash to the same value, we call it a collision.

Introduction

= There are many methods to resolve collisions, here are just a
as!

Functions

few.

Pseudorandom
Numbers

) A @ Open Hashing (aka separate chaining) — each hash address
epresentation

of Integers is the head of a linked list. When collisions occur, the new
Euclid's key is appended to the end of the list.

Algorithm
CRT. @ Closed Hashing (aka open addressing) — when collisions

Cryptography occur, we attempt to hash the item into an adjacent hash
address. This is known as linear probing.

Nebisidia Pseudorandom Numbers

Lincoln

Number
Theory:
Applications

CSE235
Many applications, such as randomized algorithms, require that

we have access to a random source of information (random
numbers).

Introduction

Hash
Functions

Pseudorandom

Numbers However, there is not truly random source in existence, only
MW v cak random sources: sources that appear random, but for
:'T_:gers which we do not know the probability distribution of events.
uclid’s

Hleerthm Pseudorandom numbers are numbers that are generated from
weak random sources such that their distribution is “random

enough”.

CR.T.

Cryptography

Nebisidia Pseudorandom Numbers |

[Linear Congruence Method

Number

Theory: One method for generating pseudorandom numbers is the

Applications . .
linear congruential method.
CSE235

Introduction Choose four integers:
Hash
Functions @ m, the modulus,

Pseudorandom
Numbers

@ a, the multiplier,

Representation @ c the increment and
of Integers
Euclid’s @ 1 the seed.
Algorithm
R Such that the following hold:
Cryptography
e2<a<m
e 0<c<m

e 0z, <m

Nebisidia Pseudorandom Numbers Il

[Linear Congruence Method

Number

Our goal will be to generate a sequence of pseudorandom
Theory:
Applications numbers,

CSE235 {ntniy

Introduction with 0 < z,, < m by using the congruence
Hash
F .
unctions xn+1 — (al‘n + C) mod m
Pseudorandom
Numbers

Representation

of ntegers For certain choices of m, a, ¢, z¢, the sequence {x, } becomes
Euclid’s periodic. That is, after a certain point, the sequence begins to

Algorith 1
B repeat. Low periods lead to poor generators.
CR.T.

Cryptography Furthermore, some choices are better than others; a generator
that creates a sequence 0,5,0,5,0,5, ... is obvious bad—its
not uniformly distributed.

For these reasons, very large numbers are used in practice.

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

CRT.

Cryptography

Linear Congruence Method

Example

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

@ Znt1 = (azxy + ¢) mod m

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

CRT.

Cryptography

AT

Linear Congruence Method

Example

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

@ Znt1 = (azxy + ¢) mod m
o z1=(5-20+2) mod 17=0

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

CRT.

Cryptography

11/109

Linear Congruence Method

Example

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as

follows.
@ Znt1 = (azxy + ¢) mod m
o z1=(5-20+2) mod 17=0
@ zo=(5-21+2) mod 17 =2

\areed Linear Congruence Method

Lincoln [SNETRTo][S

Number E |
Theory: Xam p €

Applications

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions e 11 = (5 - Lo —+ 2) mod 17 = 0
Pseudorandom ° Iy — (5 I + 2) mod 17=2

Numbers
Representation ° I3 = (5 - Ty SIE 2) mod 17 =12

of Integers

Euclid's
Algorithm

CRT.

Cryptography

12/109

\areed Linear Congruence Method

Lincoln [SNETRTo][S

Number E |
Theory: Xamp (S
Applications)
Let m = 17,a = 5,¢ = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions e 11 = (5 - Lo —+ 2) mod 17 = 0
Numbere @ z3=(5-z1+2) mod 17 =2
el o o — (525 +2) mod 17 = 12
Euclid’s @ 4= (5 - x3 + 2) mod 17 =11

Algorithm
CR.T.

Cryptography

13 /109

\areed Linear Congruence Method

Lincoln [SNETRTo][S

Number E |
Theory: Xamp (S
Applications)
Let m = 17,a = 5,¢ = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

FumETE @z =(5-29+2) mod 17=0
Numbere @ z3=(5-z1+2) mod 17 =2
il o x5 = (57> +2) mod 17 = 12
;E\T[;C(Li:ij;im @ zy=(5-x3+2) mod 17 =11
CRT. @ x5=(5-24+2) mod 17=6

Cryptography

14 /109

\areed Linear Congruence Method

Lincoln [SNETRTo][S

Number E |
Theory: Xamp (S
Applications)
Let m = 17,a = 5,¢ = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions e 11 = (5 - Lo —+ 2) mod 17 = 0
Numbere @ z3=(5-z1+2) mod 17 =2
bl © 3 = (5 22 +2) mod 17 = 12
i-f;(l)i:iit';m @ 1y = (5 -x3 + 2) mod 17 =11
CRT. @ x5=(5-24+2) mod 17=6
Cryptography @ z6 = (5 x5+ 2) mod 17 = 15

15 /109

\areed Linear Congruence Method

Lincoln [SNETRTo][S

Number
Theory:
Applications

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions e 11 = (5 - Lo —+ 2 mod 17 = 0

Pseudorandom

)
Numbers @ z3=(5-z1+2) mod 17 =2
o g o x3=(5-22+2) mod 17 = 12
Buclids o 4= (5-23+2) mod 17 =11
CRT. @ x5=(5-24+2) mod 17=6
Crptography o 26 = (5 25 +2) mod 17 = 15
o z7=(5-26+2) mod 17=9

16 /109

\areed Linear Congruence Method

Lincoln [SNETRTo][S

Number
Theory:
Applications

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions o z1=(5-20+2)mod17=0
Numbere @ z3=(5-z1+2) mod 17 =2
il © 3 — (5 3+ 2) mod 17 = 12
Eucligs o 4= (5-23+2) mod 17 =11
CRT @ x5=(5-24+2) mod 17=6
Cryptography @ z6 = (5 x5+ 2) mod 17 = 15

@ z7=(5-26+2) mod 17=9

@ zg = (5 27+ 2) mod 17 = 13 etc.

17/109

Amee Representation of Integers |

Lincoln

Number
Theory:
Applications

CSE235

This should be old-hat to you, but we review it to be complete

Introduction
o (it is also discussed in great detail in your textbook).
Functions
Any integer n can be uniquely expressed in any base b by the

Pseudorandom

Numbers following expression.

Representation
of Integers

= n=apb® + ap_ 0"+ -+ agb® + arb + ag

Modular
Exponentiation

Euclid’s In the expression, each coefficient a; is an integer between 0

Algorith | i
gorithm and b — 1 inclusive.
C.R.T.

Cryptography

amee Representation of Integers |l

Lincoln

Number
Theory:
Applications

CSE235 For b = 2, we have the usual binary representation.
b = 8, gives us the octal representation.

Hash b = 16 gives us the hexadecimal representation.
ELncticls b = 10 gives us our usual decimal system.

Pseudorandom
Numbers We use the notatiOn

Representation
of Integers
Ortons (aak—1---azarao)s

Modular
Exponentiation

Introduction

For b = 10, we omit the parentheses and subscript. We also
omit leading Os.

Euclid's
Algorithm

CRT.

Cryptography

\Ameem Representation of Integers

Lincoln [SNETRTo][S

Number
Theory:
Applications EXa m ple

CSE235

Introduction (B9)16 = 11 :]‘61 + 9 . 160

Hash = 176 +9 =185

Functions (271)g = 2.824+7-81+1.-89=128+4+56+1
Pseudorandom — 185

Numbers

FEpemmeeen (1011 1001)y = 1-274+0-2641-254+1-2441.23

+0-22+40-2' +1-20 =185
Operations

Modular

Exponentiation You can verify the fo”owing on your own:
Euclid’s
Algorithm

CRT. 134 = (1000 0110)2 = (206)s = (86)16

Cryptography

44613 = (1010 1110 0100 0101)y = (127105)s = (AE45)16

20 /109

Nebsiada Bas_e Expansion
Lincoln Al gorit hm

Number There is a simple and obvious algorithm to compute the base b

Theory:
Applications expans|on Of an Integel’.

CSE235
Introduction . X
INPUT . A nonnegative integer n and a base b.
Hash .
oS OuTPUT : The base b expansion of n.
Pseudorandom qg—n
Numbers k—0

Representation

WHILE g # 0 DO
of Integers

ap <— q mod b

Integer

Operations q
— | 2
Modular q |— b J
Exponentiation
k—k+1

Euclid's

Algorithm END

0N O AW N =

CRT. output (ax_1ax_2---aiap)

Cryptography

What is its complexity?

21/109

\Areeme Integer Operations |

Lincoln

AL You should already know how to add and multiply numbers in

Theory:
Applications b|nary expansions.
CSE235

If not, we can go through some examples.

Introduction

Hash In the textbook, you have 3 algorithms for computing:

Functions

Pseudorandom
Numbers

Representation @ Product of two integers in binary expansion; runs in O(n?)

of Integers

Integer (an algorithm that runs in O(n!-58%) exists).

Operations

E @ div and mod for

Euclid's

Algorithm q = a diV d

CRT. r = amodd

© Addition of two integers in binary expansion; runs in O(n).

Cryptography

The algorithm runs in O(qloga) but an algorithm that
runs in O(log qlog a) exists.

jareeM Modular Exponentiation |

Lincoln

Number
Theory:

Applications One useful arithmetic operation that is greatly simplified is
€Sl modular exponentiation.

Introduction

Say we want to compute

Hash

Functions

Pseudorandom an mod m

Numbers

R g . .)

il Where 1 is a very large integer. We could simply compute
Integer

Operations

’éﬂx%il:]l:;tiation [0 6 I 8

Euclid's n times

Algorithm
C.R.T. . i
We make sure to mod each time we multiply to prevent the

product from growing too big. This requires O(n) operations.

Cryptography

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Integer
Operations

Modular
Exponentiation

Euclid's
Algorithm

CRT.

Cryptography

Modular Exponentiation Il

squaring of the base,

8

a,a?,a*, a8, .

requiring log n operations instead.

Formally, we note that

- abk2’€+bk,12k—1+-~~+b12+bo

= «

kak X abk—12k71

X - x a2t x o

So we can compute ' by evaluating each term as

b2 — {

«
1

91

ifb;=1
ifb; =0

We can do better. Intuitively, we can perform a repeated

bo

aree Modular Exponentiation Il

Lincoln

Number
Theory:
Applications

CSE235

Introduction We can save computation because we can simply square
Hash previous values:

Functions

2t _ o 2i71\2
Pseudorandom G (a)

Numbers

e Ve still evaluate each term independently however, since we

of Integers

- will need it in the next term (though the accumulated value is

Operations

Moduar only multiplied by 1).
Euclid's
Algorithm

CRT.

Cryptography

\aree Modular Exponentiation IV

Lincoln

MODULAR EXPONENTIATION
Number
Theory:

Aspifeiens INPUT : Integers a,m and n = (bgbg—1 ...b1bo) in binary.

CSE235 OuTPUT :a”™ mod m
1 term =«
Introduction 2 IF (bO — 1) THEN
Hash 3 product = «
Functions
4 END
Pseudorandom 5
Numbers ELSE
6 product = 1
Representation
of Integers 7 END
Integer -
R 8 FORi=1...k DO
Modular 9 term = term X term mod m
Exponentiation
Eudlid's 10 IF (b; = 1) THEN
Algorithm 11 product = product X term mod m
C.R.T. 12 END
Cryptography 13 END

14 output product

26 /109

arew Binary Exponentiation

Lincoln Exam P le

Number
Theory:
Applications

CSE235
226 mod 17 using Modular Exponentiation.

Compute 1

Introduction

Hash

Functions
1[1 [0 [1]0 [=(26)

Pseudorandom

Numbers 4 3 2 1 _ |

Representation

of Integers term
Int:

it product

Modular
Exponentiation

Euclid's
Algorithm

CRT.

Cryptography

27 /109

arew Binary Exponentiation

Lincoln Exam o] le

Number
Theory:
Applications

CSE235

Compute 1226

Introduction

mod 17 using Modular Exponentiation.

Hash
Functions

Pseudorandom 1]- 0

Numbers 4 3 2

Representation
of Integers

Integer
Operations
Modular

0 | =(26)9
- i

12 | term

1 | product

Exponentiation

Euclid's
Algorithm

CRT.

Cryptography

28 /109

arew Binary Exponentiation

Lincoln Exam o] le

Number
Theory:
Applications

CSE235

Compute 1226

Introduction

mod 17 using Modular Exponentiation.

Hash
Functions

Pseudorandom 1]- 0

Numbers 4 3 2

Representation
of Integers

Integer
Operations

Modular

1[0 [=(26)
1]- i

8| 12 | term
8|1 | product

Exponentiation

Euclid's
Algorithm

CRT.

Cryptography

29/109

arew Binary Exponentiation

Lincoln Exam P le

Number
Theory:
Applications

CSE235

Compute 1226

Introduction

mod 17 using Modular Exponentiation.

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers
Integer
Operations
Modular
Exponentiation
Euclid's
Algorithm

CRT.

Cryptography

0 [1]0 | =(26)
2 | 1]- i

13| 8| 12 | term

8 | 8|1 | product

arew Binary Exponentiation

Lincoln Exam P le

Number
Theory:
Applications

CSE235

Compute 1226

Introduction

mod 17 using Modular Exponentiation.

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers
Integer
Operations
Modular
Exponentiation
Euclid's
Algorithm

CRT.

Cryptography

31/109

1 |0 [1]0 |=(26)
3 12 |1]- i

16 | 13 | 8 | 12 | term

9 |8 | 8|1 | product

arew Binary Exponentiation

Lincoln Exam P le

Number
Theory:
Applications

CSE235

Compute 122 mod 17 using Modular Exponentiation.

Introduction

Hash

Functions

Pseudorandom 1 1 0 1 0 = (26)2
Numbers 4 2 1 _ |
e 1116 13]8 |12 term
Opesations 919 |8 | 8|1 | product

Modular
Exponentiation

Euclid's
Algorithm

CRT.

Cryptography

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Integer
Operations

Modular

Exponentiation
Euclid's
Algorithm
CR.T.

Cryptography

33/109

Binary Exponentiation

Example

Compute 122 mod 17 using Modular Exponentiation.

Thus,

1{1 [0 [1]|0 |=(26)
413 |2 |1]- i
1116|138 |12 | term
919 |8 |8]|1 | product

122 mod 17 =9

e Euclid’s Algorithm

Lincoln

Number
Theory:
Applications

CSE235

Introduction

o Recall that we can find the ged (and thus lem) by finding the
Functions prime factorization of the two integers.

Pseudorandom

Numbers However, the only algorithms known for doing this are
Nl exponential (indeed, computer security depends on this).

of Integers

e . L .
i We can, however, compute the gcd in polynomial time using

Computing the Euclid’s Algorithm.

inverse

Solving a linear
congruence

CRT.

Cryptography

aree Euclid’s Algorithm |

[ET Intuition

Number
Theory:
Applications

CSE235

Consider finding the ged(184,1768). Dividing the large by the
smaller, we get that

Introduction

Hash
Functions

Pseudorandom 1768 - 184 . 9 + 112

Numbers

il Using algebra, we can reason that any divisor of 184 and 1768
must also be a divisor of the remainder, 112. Thus,

Euclid's
Algorithm
Computing the

ged (184, 1768) = ged(184,112)

Solving a linear
congruence

CRT.

Cryptography

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography

Euclid’s Algorithm |l

Intuition

Continuing with our division we eventually get that

ged(184,1768) = ged(184,112)
= gcd(184,72)
ged(184, 40
(
(
(

)
ged(184,24)
ged (184, 16)
= gcd(184,8) =

This concept is formally stated in the following Lemma.

Leta =bq+r, a,b,q,r € Z, then

ng(aa b) = ng(ba T‘)

e Euclid’s Algorithm [II

[ET Intuition

Number
Theory:
Applications

CSE235

The algorithm we present here is actually the Extended
Introduction Euclidean Algorithm. It keeps track of more information to find
Hash integers such that the gcd can be expressed as a /inear

Functions

combination.

Pseudorandom
Numbers

Representation

f | .. . o 5
o eEes If a and b are positive integers, then there exist integers s,t
Euclid's
Algorithm SUCh that

o e ged(a, b) = sa + tb

Solving a linear
congruence

CRT.

Cryptography

37/109

InPUT : Two positive integers a, b.

OutpUT : r = ged(a, b) and s, t such that sa + tb = ged(a, b).
1 ap=a,bg=0
2 tp=0,t=1
3 s0=1,5=0
4 q=|3
5 r=ag—qbo
6 WHILE r > 0 DO
7 temp = to — qt
8 to = t,t = temp
9 temp = sp — ¢s
10 sp = 8,8 = temp
11 ag =bg, bg =1
12 q=1[32], 7 =a0—qbo
13 IF r > 0 THEN
14 ged =7
15 END
16 END

17 output ged, s,t

Algorithm 1. EXTENDEDEUCLIDIANALGORITHM

Euclid’'s Algorithm

Example

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation

of Integers

Euclid's
Algorithm
Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography

Euclid’'s Algorithm

Example

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation

of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography

e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography

e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography

e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation

of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography

e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation

of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography

e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm
s Therefore,

Solving a linear
congruence

Chr ged(27,58) = 1 = (—15)27 + (7)58

Cryptography

e Euclid’s Algorithm

Lincoln Exam P le

Number
Theory:

EEEl Compute ged (25480, 26775) and find s, ¢ such that

CSE235

ged (25480, 26775) = 25480s + 26775t

Introduction

Hash
Functions

Pseudorandom a0 bo to L 50 s q r
Numbers 25480 | 26775 | O 1 1 0 0 | 25480
S;ﬁ:fzzggﬁm 26775 | 25480 | 1 0 0 1 1 1295
p—— 25480 | 1295 |0 1 1 -1 |19 | 875

- 1295 | 875 1 -19 -1 |20 |1 |420
e lnear 875 420 -19 120 |20 | -21 |2 |35
C:T 420 35 20 |59 |-21 |62 |12 |0
CoptoBrEeny Therefore,

gcd (25480, 26775) = 35 = (62)25480 + (—59)26775

e Euclid’s Algorithm

i Comments

Number
Theory:

Applications I n sum mary:

CSE235
@ Using the Euclid’s Algorithm, we can compute

g r = ged(a, b), where a,b,r are integers.
Hash
Functions @ Using the Extended Euclide's Algorithm, we can compute

Pseudorandom the integers r, s, such that ged(a,b) = r = sa + tb.

Numbers

Representation . f .

of Integers We can use the Extended Euclide's Algorithm to:
Euclid’'s
alsgiin e Compute the inverse of an integer a modulo m, where

Computing the

- ged(a,m)=1. (The inverse of a exists and is unique
modulo m when ged(a, m)=1.)

congruence
CR.T.
Cryptography @ Solve an equation of linear congruence az = b(mod m),

where ged(a, m)=1

e Euclid’s Algorithm

i Computing the inverse

Number
Theory:
Applications

CSE235

lhiodictio Problem: Compute the inverse of a modulo m with

A ged(a, m)=1, that is find a~! such that a.a™! = 1(mod m)

Pseudorandom

Numbers ng(a,m) = 1 = 1 = sa + tm
Representation USing the EEA, we can flnd S and t.

of Integers

Euclid’s 1 = sa+tm = sa(mod m) = s =a~ L.

Algorithm
Computing the

Example: Find the inverse of 5 modulo 9.

Solving a linear
congruence

CRT.

Cryptography

e Euclid’s Algorithm

[Solving a linear congruence

Number
Theory:
Applications

. Problem: Solve ax = b(mod m), where ged(a, m)=1.

Introduction

Hoch Solution:

as

Functions

e @ Find a—! the inverse of a module m.

Numbers

S o Multiply the two terms of az = b(mod m) by a™!.

of Integers ar = b(mod m) =
Euclid’s —1 _ —1

Algorithm a "ar =a b(mod m) =
T x = a tb(mod m).

Solving a linear
congruence

CRT. Example: Solve 5z = 6(mod 9).

Cryptography

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Arithmetic

Cryptography

Chinese Remainder Theorem

We've already seen an application of linear congruences
(pseudorandom number generators).

However, systems of linear congruences also have many
applications (as we will see).

A system of linear congruences is simply a set of equivalences
over a single variable.

x = 5(mod 2)
x = 1(mod 5)
x = 6(mod 9)

Nebisidia Chinese Remainder Theorem

Lincoln

Number
Theory:
Applications

Theorem (Chinese Remainder Theorem)

CSE235
Let my, ma, ..., m, be pairwise relatively prime positive
integers. The system

Introduction

Hash
Functions

Pseudorandom r = a1 (mOd ml)
Numbers _
x = az(mod mg)

Representation
of Integers

Euclid's
Algorithm x = ap(mod my)

AR has a unique solution modulo m = mima - - - my,.
Cryptography

How do we find such a solution?

51/109

Nebisda Chinese Remainder Theorem

(B Proof/Procedure

Moy This is a good example of a constructive proof; the

Theory:

Applications construction gives us a procedure by which to solve the system.
CSE235 The process is as follows.

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Arithmetic

Cryptography

Nebisda Chinese Remainder Theorem

(B Proof/Procedure

Moy This is a good example of a constructive proof; the

Theory:

Applications construction gives us a procedure by which to solve the system.
CSE235 The process is as follows.

Introduction
_ @ Compute m = mimsg - --my,.
asl

Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Arithmetic

Cryptography

Nebisda Chinese Remainder Theorem

(B Proof/Procedure

Number This is a good example of a constructive proof; the

Theory:

Applications construction gives us a procedure by which to solve the system.
CSE235 The process is as follows.

Introduction

@ Compute m = mimsg - --my,.

Hash

Functions @ Foreach k=1,2,...,n compute
Pseudorandom

Numbers Mk _ m
Representation mi

of Integers

Euclid's
Algorithm

Arithmetic

Cryptography

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Arithmetic

Cryptography

Chinese Remainder Theorem

Proof/Procedure

This is a good example of a constructive proof; the
construction gives us a procedure by which to solve the system.
The process is as follows.

@ Compute m = mimsg - --my,.
@ Foreach k=1,2,...,n compute

© Foreach k=1,2,...,n compute the inverse, y; of
M}, mod my, (note these are guaranteed to exist by a
Theorem in the previous slide set).

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Arithmetic

Cryptography

Chinese Remainder Theorem
Proof/Procedure

This is a good example of a constructive proof; the
construction gives us a procedure by which to solve the system.
The process is as follows.

@ Compute m = mimsg - --my,.
@ Foreach k=1,2,...,n compute

M= ™
my
© Foreach k=1,2,...,n compute the inverse, y; of

M}, mod my, (note these are guaranteed to exist by a
Theorem in the previous slide set).
@ The solution is the sum

n
v = axMys
k=1

Nebiisdk Chinese Remainder Theorem |

Lincoln Exam P le

Number

Theory:
Applications Example

CSE235 Give the unique solution to the system
Introduction
o x = 2(mod 4)
Functions xr = 1(m0d 5)
Eseutt:l)orandom xr = 6(m0d 7)
Representation x = 3(m0d 9) J
of Integers
Euclid’'s .
Algorithm First, m =4-5-7-9 = 1260 and
Arithmetic]\41 — 12460 =315
Cryptography _ 1260

1260

57 /109

Nebisde Chinese Remainder Theorem Il

i Example

Number
Theory:
Applications

CSE235

Introduction The inverses of each of these is y; = 3,y2 = 3,y3 = 3 and
Hash ya = 2. Therefore, the unique solution is

Functions

Pseudorandom

Numbers r = a1Miy; + asMsoys + asMsys + agsMyy,
Represertation = 2.315-3+41-252-34+6-180-3+3-140-2
o = 6726 mod 1260 = 426

Euclid's
Algorithm

Arithmetic

Cryptography

Nebicidlia Chinese Remainder Theorem
jEery Wait, what?

Number
Theory:
Applications

CSE235

To solve the system in the previous example, it was necessary to
determine the inverses of M;, modulo mi—how'd we do that?

Introduction

Hash
Functions

Pseudorandom One Way (as in thls Case) is to try eVery Single element @
Numbers 2 S a S m — 1 to see if

Representation
of Integers

Euclid’s aMy = 1(m0d m)
Algorithm

But there is a more efficient way that we already know how to
et do—Euclid’s Algorithm!

Cryptography

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Arithmetic

Cryptography

60 /109

Computing Inverses

Lemma

Let a,b be relatively prime. Then the linear combination
computed by the Extended Euclidean Algorithm,

ged(a, b) = sa + th

gives the inverse of a modulo b; i.e. s = a~! modulo b.

Note that £ = b~! modulo a.

Also note that it may be necessary to take the modulo of the
result.

\Areem Chinese Remainder Representations

Lincoln

Number
Theory:
Applications

CSE235

Introduction In many applications, it is necessary to perform simple
Hash arithmetic operations on very large integers.

Functions

Castlll Such operations become inefficient if we perform them bitwise.

Numbers

Mdssiuiadl Instead, we can use Chinese Remainder Representations to

of Integers

S perform arithmetic operations of large integers using smaller
Algorithm integers saving computations. Once operations have been

C.R.T. . .
performed, we can uniquely recover the large integer result.

Arithmetic

Cryptography

\Areem Chinese Remainder Representations

Lincoln

Number
Theory:
Applications

CSE235
Lemma

Introduction

Hash Let my,mo, ..
Functions m; 2 2 Let

Pseudorandom
Numbers

., My be pairwise relatively prime integers,

m = 1mima---Mpy

Representation

o s Then every integer a,0 < a < m can be uniquely represented

Enclidis by n remainders over my;; i.e.
Algorithm

CRT.
Arithmetic

(a mod my,a mod mag,...,a mod my)

Cryptography

62 /109

\Areem Chinese Remainder Representations |

Lincoln Exam o] le

Number
Theory:
Applications

CSE235

Let mq = 47, my = 48, m3 = 49, m4 = 53. Compute
Introduction 2,459,123 4 789, 123 using Chinese Remainder
hizsh Representations.

Functions

Pseudorandom
Numbers

Reoresentation By the previous lemma, we can represent any integer up to
of Integers 5,858,832 by four integers all less than 53.

Euclid's
Algorithm F| rst
1

CRT. 2,459,123 mod 47 = 36
2,459,123 mod 48 = 35
2,459,123 mod 49 = 9

2,459,123 mod 53 = 29

Cryptography

Areem Chinese Remainder Representations

i Example

Number
Theory:
Applications

CSE235

789,123 mod 47 = 40
Introduction 789, 123 mOd 48 — 3
fehy 789,123 mod 49 = 27

789,123 mod 53 = 6

Pseudorandom
Numbers

s S0 we've reduced our calculations to computing (coordinate

f | . .
of integers wise) the addition:
Euclid's

Algorithm

crr (36,35,9,29) + (40,3,27,6) = (76,38,36,35)
= (29,38, 36,35)

Cryptography

areemd Chinese Remainder Representations Il|

i Example

Number
Theory:

Applications Now we wish to recover the result, so we solve the system of

CSE235 linear congruences,

::;:dumon x = 29(mod 47)
Functions xr = 38(m0d 48)
Eiel:t;z:ndom i = 36(H10d 49)
Representation T = 35(m0d 53)
of Integers

Euclid's

Algorithm]\4’1 — 124656
etic M2 = 1 2 2059
Cryptography M3 - 119568

My = 110544

\Areem Chinese Remainder Representations IV

i Example

Number
Theory:
Applications

CSE235
We use the Extended Euclidean Algorithm to find the inverses
of each of these w.r.t. the appropriate modulus:

Introduction

Hash

Functions

Pseudorandom — 4
Numbers yl 19
Representation yQ -

of Integers y3 — 43
Euclid's y4 — 34

Algorithm

CR.T.
Arithmetic

Cryptography

Areem Chinese Remainder Representations V

i Example

Number
Theory:
Applications

CSE235

Introduction And so we have that
Hash

Functions T 29(124656 mod 47)4 + 38(122059 mod 48)19+
Nombera " 36(119568 mod 49)43 + 35(110544 mod 53)34
Reresanaiien = 3,248,246

of Integers = 2,459,123 + 789,123

Euclid's
Algorithm

CR.T.
Arithmetic

Cryptography

Nebicidlia Caesar Cipher |

Lincoln

Number
Theory:
Applications

CSE235

Introduction Cryptography is the study of secure communication via

blash encryption.

Functions

sl One of the earliest uses was in ancient Rome and involved what
is now known as a Caesar cipher.

Representation
of Integers

—— This simple encryption system involves a shift of letters in a
i fixed alphabet. Encryption and decryption is simple modular

CRT arithmetic.

Cryptography
Caesar Cipher
Affine Cipher
RSA

area Caesar Cipher |l

Lincoln

Number
Theory:
Applications

In general, we fix an alphabet, ¥ and let m = |X|. Second, we
fix an secret key, an integer k such that 0 < k < m. Then the
encryption and decryption functions are

CSE235

Introduction

Hash

Functions

Pseudorandom ek(l‘) — (Z,U + k) mod m

Numbers dk (y) _ (y N k) mOd m

Representation

of Integers)

Euclid’s respectively.

Algorithm

CRT. Cryptographic functions must be one-to-one (why?). It is left
Cryptography as an exercise to verify that this Caesar cipher satisfies this

Caesar Cipher Cond |tion]

Affine Cipher
RSA

Nebisidia Caesar Cipher

Lincoln Exam P le

Number
Theory:
Applications

CSE235
Let ¥ ={A,B,C,...,Z} so m = 26. Choose k = 7. Encrypt
“"HANK" and decrypt “KLHU".

Introduction

Hash
Functions

sl “HANK" can be encoded (7-0-13-10), so
Representation

o g e7) = (T+7) mod?26 =14
Aot e(0) = (0+7)mod26 =7
CRT. e(13) = (134 7) mod 26 =20
Cryptography 6(10) = (10 =+ 7) mod 26 =17

Caesar Cipher

so the encrypted word is "OHUR".

Nebisidia Caesar Cipher

i Example Continued

Number
Theory:
Applications

CSE235

Intreduction “KLHU" is encoded as (10-11-7-20), so

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher
RSA

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher
RSA

Caesar Cipher

Example Continued

“KLHU" is encoded as (10-11-7-20), so

(10 — 7) mod 26

\areemy Caesar Cipher

i Example Continued

Number
Theory:
Applications

CSE235

Introduction "KLHU" is encoded as (10-11-7-20), so

Hash
Functions

Pseudorandom 6(10) = (10 - 7) mod 26 = 3
Numbers 6(11) = (]_1 — 7) mod 26 — 4

Representation
of Integers

Euclid's
Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher
RSA

\areemy Caesar Cipher

i Example Continued

Number
Theory:
Applications

CSE235

Intreduction “KLHU" is encoded as (10-11-7-20), so

Hash
Functions

Pseudorandom 6(10) = (10 - 7) mod 26 = 3
Numbers 6(11) = (]_1 — 7) mod 26 — 4
7 = (T—-7)mod26 =0

Representation e (
of Integers

Euclid's
Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher
RSA

\areemy Caesar Cipher

i Example Continued

Number
Theory:
Applications

CSE235

Intreduction “KLHU" is encoded as (10-11-7-20), so

Hash
Functions

Pseudorandom 6(10) == (10 - 7) mod 26 = 3
Numbers 6(11) = (]_1 J— 7) mod 26 —
Rfe:)rfsentation 6(7) = (7 _ 7) mod 26 =0
of Integers

Euclid’s e(20) = (20—-7) mod 26 =13

Algorithm
CR.T.

Cryptography
Caesar Cipher
Affine Cipher
RSA

Nebisidia Caesar Cipher

i Example Continued

Number
Theory:
Applications

CSE235

Intreduction “KLHU" is encoded as (10-11-7-20), so

(10) = (
(11) = (
(1) = (7~
(20) = (

Q

Pseudorandom
Numbers

@

Representation
of Integers

o O

Euclid's
Algorithm

CRT. So the decrypted word is “DEAN".

Cryptography
Caesar Cipher

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

Affine Cipher |

Clearly, the Caesar cipher is insecure—the key space is only as
large as the alphabet.

An alternative (though still not secure) is what is known as an
affine cipher. Here the encryption and decryption functions are
as follows.

ex(z) = (ax+b) modm
dp(y) = a '(y—0b) modm

Question: How big is the key space?

Nebicidlia Affine Cipher

Lincoln Exam o] le

Number
Theory:
Applications

S To ensure a bijection, we choose m = 29 to be a prime (why?).
Let a = 10,b = 14. Encrypt the word “PROOF" and decrypt
the message “OBGJLK".

Introduction

Hash
Functions

bwewoiall PROOF" can be encoded as (16-18-15-15-6). The encryption
Representation iS as f0||OWS.

of Integers

Euclid's
Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

78 /109

Nebisde Affine Cipher

Lincoln Exam P le

Number
Theory:
Applications

S To ensure a bijection, we choose m = 29 to be a prime (why?).
Let a = 10,b = 14. Encrypt the word “PROOF" and decrypt
the message “OBGJLK".

Introduction

Hash
Functions

bwewoiall PROOF" can be encoded as (16-18-15-15-6). The encryption
Representation iS as f0||OWS.

of Integers

Euclid’s 6(16) = (10 216 + 14) mod 29 =0

Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

Nebisda Affine Cipher

Lincoln Exam P le

Number
Theory:
Applications

S To ensure a bijection, we choose m = 29 to be a prime (why?).
Let a = 10,b = 14. Encrypt the word “PROOF" and decrypt
the message “OBGJLK".

Introduction

Hash
Functions

bwewoiall PROOF" can be encoded as (16-18-15-15-6). The encryption
Representation iS as f0||OWS.

of Integers
ircliqt'; 6(16) = (10 216 + 14) mod 29 =0
: (1018 4+ 14) mod 29 = 20

@
—~
—_
oo
SN—

I

CR.T.

Cryptography
Caesar Cipher

Nebisda Affine Cipher

Lincoln Exam P le

Number
Theory:
Applications

S To ensure a bijection, we choose m = 29 to be a prime (why?).
Let a = 10,b = 14. Encrypt the word “PROOF" and decrypt
the message “OBGJLK".

Introduction

Hash
Functions

bwewoiall PROOF" can be encoded as (16-18-15-15-6). The encryption
Representation iS as f0||OWS.

of Integers

ircliqt'; 6(16) = (10 216 + 14) mod 29 =0

e e(18) = (10-18+14) mod 29 =20
6(15) = (10 -15 + 14) mod 29 =19

Cryptography
Caesar Cipher

Nebisda Affine Cipher

Lincoln Exam P le

Number
Theory:
Applications

S To ensure a bijection, we choose m = 29 to be a prime (why?).
Let a = 10,b = 14. Encrypt the word “PROOF" and decrypt
the message “OBGJLK".

Introduction

Hash
Functions

bwewoiall PROOF" can be encoded as (16-18-15-15-6). The encryption
Representation iS as f0||OWS.

of Integers

ircliqt'; 6(16) = (10 216 + 14) mod 29 =0
e e(18) = (10-18+14) mod 29 =20
c 6(15) = (10 -15 + 14) mod 29 =19
ryptography

Caesar Cipher 6(15) (10 -15+ 14) mod 29 =19

Nebisda Affine Cipher

Lincoln Exam P le

Number
Theory:
Applications

S To ensure a bijection, we choose m = 29 to be a prime (why?).
Let a = 10,b = 14. Encrypt the word “PROOF" and decrypt
the message “OBGJLK".

Introduction

Hash
Functions

bwewoiall PROOF" can be encoded as (16-18-15-15-6). The encryption
Representation iS as f0||OWS.

of Integers

ircliqt'; 6(16) = (10 216 + 14) mod 29 =0

e e(18) = (10-18+14) mod 29 =20

c 6(15) = (10 -15 + 14) mod 29 =19

ryptography

Caesar Cipher 6(15) = (10 -15+ 14) mod 29 =19
6(6) = (10 -6+ 14) mod 29 =16

Nebisda Affine Cipher

Lincoln Exam P le

Number
Theory:
Applications

S To ensure a bijection, we choose m = 29 to be a prime (why?).
Let a = 10,b = 14. Encrypt the word “PROOF" and decrypt
the message “OBGJLK".

Introduction

Hash
Functions

bwewoiall PROOF" can be encoded as (16-18-15-15-6). The encryption
Representation iS as f0||OWS.

of Integers

ircliqt'; 6(16) = (10 216 + 14) mod 29 =0

e e(18) = (10-18+14) mod 29 =20

c 6(15) = (10 -15 + 14) mod 29 =19

ryptography

Caesar Cipher 6(15) = (10 -15+ 14) mod 29 =19
6(6) = (10 -6+ 14) mod 29 =16

The encrypted message is "AUPPG".

Nebisda Affine Cipher

i Example Continued

Number
Theory:
Applications

When do we attack? Computing the inverse, we find that
-1
a " =3.

CSE235

Introduction

Hash. We can decrypt the message "OBGJLK" (14-1-6-9-11-10) as
e follows.

Pseudorandom
Numbers

Representation
of Integers

Euclid's

Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

Nebisda Affine Cipher

i Example Continued

Number
Theory:
Applications

When do we attack? Computing the inverse, we find that
-1
a " =3.

CSE235

Introduction

Hash. We can decrypt the message "OBGJLK" (14-1-6-9-11-10) as
e follows.

Pseudorandom
Numbers

o : e(14) = 3(14—14)mod29 =0 =A4
epresentation

of Integers

Euclid's

Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

Nebisde Affine Cipher

i Example Continued

Number
Theory:
Applications

When do we attack? Computing the inverse, we find that
-1
a " =3.

CSE235

Introduction

Hash. We can decrypt the message "OBGJLK" (14-1-6-9-11-10) as
anetions follows.

Pseudorandom

Numbers

Representation 6(14) = 3(14 - 14) mOd 29 = 0 = A

of Integers e(l) = 31—-14)mod29 =19 =T

Euclid's

Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

Nebisde Affine Cipher

i Example Continued

Number
Theory:
Applications

When do we attack? Computing the inverse, we find that
-1
a " =3.

CSE235

Introduction

Hash. We can decrypt the message "OBGJLK" (14-1-6-9-11-10) as
unctions fO”OWS

Pseudorandom

Numbers

Representation e(14) = 3(14—14)mod29 =0 =A

of Integers e() = 3(1-14)mod29 =19 =T

e e(6) = 3(6—14)mod29 =5 =F

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

Nebisda Affine Cipher

i Example Continued

Number
Theory:
Applications

When do we attack? Computing the inverse, we find that
-1
a " =3.

CSE235

Introduction

Hash. We can decrypt the message "OBGJLK" (14-1-6-9-11-10) as
e follows.

Pseudorandom
Numbers

s

14—-14)mod29 =0 =A
1-14)mod29 =19 =T
6—14) mod29 =5 =F
9—-14)mod29 =14 =0

Representation
of Integers

Euclid's

s

Algorithm

)
e e
—_
— T —
I

3(
3(
3(
3(

D

CR.T.

Cryptography
Caesar Cipher

Nebisda Affine Cipher

i Example Continued

Number
Theory:
Applications

When do we attack? Computing the inverse, we find that
-1
a " =3.

CSE235

Introduction

Hash We can decrypt the message "OBGJLK" (14-1-6-9-11-10) as
e udorandon follows.

W o 0 mean 0

of Integers e(l) = 3(1—-14)mod29 =19 =T

G e(6) = 3(6-14)mod29 =5 =F

CRT. e9) = 30—-14)mod29 =14 =

R e(11) 3(11—14) mod 29 =20 =U

Caesar Cipher

Nebisda Affine Cipher

i Example Continued

Number
Theory:
Applications

When do we attack? Computing the inverse, we find that
-1
a " =3.

CSE235

Introduction

Hash We can decrypt the message "OBGJLK" (14-1-6-9-11-10) as
e udorandon follows.
e(14) = 3(14—14)mod2 =0 =4
of Integers e(l) = 3(1—-14)mod29 =19 =T
G e(6) = 3(6-14)mod29 =5 =F
CRT. e9) = 30—-14)mod29 =14 =
R e(ll) = 3(11-14)mod29 =20 =U
(3(

Caesar Cipher

10-14) mod 29 =17 =R

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

Public-Key Cryptography |

The problem with the Caesar & Affine ciphers (aside from the

fact that they are insecure) is that you still need a secure way
to exchange the keys in order to communicate.

Public key cryptosystems solve this problem.

One can publish a public key.
Anyone can encrypt messages.
However, decryption is done with a private key.

The system is secure if no one can feasibly derive the
private key from the public one.

Essentially, encryption should be computationally easy,
while decryption should be computationally hard (without
the private key).

Such protocols use what are called “trap-door functions”.

\areem Public-Key Cryptography I

Lincoln

Number
Theory:
Applications

CSE235

IRl Many public key cryptosystems have been developed based on
pesh the (assumed) hardness of integer factorization and the discrete
log problems.

Pseudorandom
Numbers

S Systems such as the Diffie-Hellman key exchange protocol
of fntegers (used in SSL, SSH, https) and the RSA cryptosystem are the
E\Tgc(l)ftim basis of modern secure computer communication.

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

\Areemd [he RSA Cryptosystem |

Lincoln

Number
Theory:
Applications

S The RSA system works as follows.

Introduction

@ Choose 2 (large) primes p, q.
Hash
Functions o Compute n =pq.

il © Compute p(n) = (p— 1)(¢ — 1).
Representation) Choose a, 2 S a S ¢(n) SUCh that gcd(a, Qs(n)) =]-

of Integers

Eucids e Compute b = a~! modulo ¢(n).
gorithm

CRT. @ Note that a must be relatively prime to ¢(n).

Cryptography @ Publish n,a
Caesar Cipher
Affine Cipher

o Keep p, q,b private.

Areeme [he RSA Cryptosystem |l

Lincoln

Number
Theory:
Applications

CSE235

treduction Then the encryption function is simply
Hash

Functions ek(x) = xa mOd n
Pseudorandom

Numbers

The decryption function is

Representation
of Integers

Euclid’s dk(y) = yb mod n

Algorithm
CR.T.

Cryptography
Caesar Cipher
Affine Cipher

\Areemd [he RSA Cryptosystem

i Computing Inverses Revisited

Number
Theory:
Applications

CSE235

Introduction

Recall that we can compute inverses using the Extended
Hash . .
Functions Euclidean Algorithm.

Pseudorandom

pscudos With RSA we want to find b = ¢! mod ¢(n). Thus, we
Representation com pUte

of Integers
Euclid's ged(a, ¢(n)) = sa + té(n)

Algorithm

- and so b = s = a~! modulo ¢(n).

Cryptography
Caesar Cipher
Affine Cipher

\Areemd [he RSA Cryptosystem

Example

Lincoln

Theory:
Applications Let p= 137 q = 17, a = 47

CSE235

Introduction We haVe

Hash
Functions

o n=13-17=221.
Eff;ﬂ::zndom o (Z)(n) =]_2 .]_6 = 192
Representation g US| g the EUCIidean Algorlthm’ b = 47—1 = 143 mOdU|0

of Integers ¢ n)
Euclid's
Algorithm

CRT. e(130) = 130*" mod 221 =

Cryptography

>

Caesar Cipher
Affine Cipher

d(99) = 99143 mod 221 =

\Areemd [he RSA Cryptosystem

Example

Lincoln

Theory:
Applications Let p= 137 q = 17, a = 47

CSE235

Introduction We haVe

Hash
Functions

o n=13-17=221.
Eff;ﬂ::zndom o (Z)(n) =]_2 .]_6 = 192
Representation g US| g the EUCIidean Algorlthm’ b = 47—1 = 143 mOdU|0

of Integers ¢ n)
Euclid's
Algorithm

CRT. 6(130) = 130%" mod 221 = 65

Cryptography

>

Caesar Cipher
Affine Cipher

d(99) = 99'** mod 221 =

\Areemd [he RSA Cryptosystem

Lincoln Exam P le

Theory:
Applications Let p= 137 q = 17, a = 47

CSE235

Introduction We haVe

Hash
Functions

n=13-17 = 221.

o(n) =12-16 = 192.

Using the Euclidean Algorithm, b = 47~! = 143 modulo
¢

"]
Pseudorandom o
Numbers

]

2
=)

Representation
of Integers

Euclid's
Algorithm

CRT. 6(130) = 130%" mod 221 = 65

Cryptography

Caesar Cipher
Affine Cipher

d(99) = 993 mod 221 = 96

\Areeme Public-Key Cryptography |

e Cracking the System

Number
Theory:
Applications

CSE235

Introduction

How can we break an RSA protocol? “Simple” —just factor n.

Hash
Functions .
o esdorand If we have the two factors p and ¢, we can easily compute ¢(n)
seudorandom . .

Numbers and since we already have a, we can also easily compute

Representation b= a_l modulo (;S(n)

of Integers

ELCiis Thus, the security of RSA is contingent on the hardness of

Algorithm
CRT integer factorization.

Cryptography
Caesar Cipher
Affine Cipher

\Ameem Public-Key Cryptography I

e Cracking the System

Number
Theory:
Applications

If someone were to come up with a polynomial time algorithm
for factorization (or build a feasible quantum computer and use
Introduction Shor’s Algorithm), breaking RSA may be a trivial matter.

hlach Though this is not likely.

Functions

CSE235

Pseudorandom

Nombore In practice, large integers, as big as 1024 bits are used. 2048
WU bit integers are considered unbreakable by today's computer;
il 4096 bit numbers are used by the truly paranoid.

Euclid's

Algorithm

But if you care to try, RSA Labs has a challenge:

CRT.
Cryptography http:

Caesar Cipher . .
Affine Cipher //www.rsasecurity.com/rsalabs/node.asp?id=2091

101 /109

http://www.rsasecurity.com/rsalabs/node.asp?id=2091
http://www.rsasecurity.com/rsalabs/node.asp?id=2091

\Ameeme Public-Key Cryptography

i Cracking RSA - Example

Number
Theory:
Applications

CSE235

Introduction

e Let a = 2367 and let n = 3127. Decrypt the message,
Functions 1125-2960-0643-0325-1884 (Who is the father of modern

Pseudorandom

Numbers computer science?)

Representation
of Integers

Factoring n, we find that n = 53 - 59 so

Euclid's
Algorithm

CRT. (;S(n) =52-58 = 3016

Cryptography
Caesar Cipher
Affine Cipher

102 /109

\Ameeme Public-Key Cryptography

i Cracking RSA - Example

Number
Theory:

AP Using the Euclidean algorithm, b = a~! = 79. Thus, the
COF23 decryption function is

Introduction

Hash d(z) = ™ mod 3127

Functions

Pseudorandom Decrypting the message we get that

Numbers

Representation
of Integers

Euclid's

Algorithm

CR.T.

Cryptography
Caesar Cipher
Affine Cipher

\Ameeme Public-Key Cryptography

i Cracking RSA - Example

Number
Theory:

AP Using the Euclidean algorithm, b = a~! = 79. Thus, the
COF23 decryption function is

Introduction

Hash d(z) = ™ mod 3127

Functions

Pseudorandom Decrypting the message we get that

Numbers

Representation

o Integsre d(1225) = 12257 mod 3127 =112

Euclid's

Algorithm

C.R.T.
Cryptography

Caesar Cipher
Affine Cipher

104 /109

\Ameeme Public-Key Cryptography

i Cracking RSA - Example

Number
Theory:

AP Using the Euclidean algorithm, b = a~! = 79. Thus, the
COF23 decryption function is

Introduction

Hash d(z) = ™ mod 3127

Functions

Pseudorandom Decrypting the message we get that

Numbers

Representation

o Integsre d(1225) = 12257 mod 3127 =112
Euclid’s d(2960) = 29607 mod 3127 =114

Algorithm

C.R.T.
Cryptography

Caesar Cipher
Affine Cipher

105 /109

\Ameeme Public-Key Cryptography

i Cracking RSA - Example

Number
Theory:

AP Using the Euclidean algorithm, b = a~! = 79. Thus, the
COF23 decryption function is

Introduction

Hash d(z) = ™ mod 3127

Functions

Pseudorandom Decrypting the message we get that

Numbers

Representation

o Integsre d(1225) = 12257 mod 3127 =112
Euclid's d(2960) = 29607 mod 3127 =114
d(0643) = 643" mod 3127 = 2021

Algorithm

C.R.T.
Cryptography

Caesar Cipher
Affine Cipher

106 /109

\Ameeme Public-Key Cryptography

i Cracking RSA - Example

Number
Theory:

AP Using the Euclidean algorithm, b = a~! = 79. Thus, the
COF23 decryption function is

Introduction

Hash d(z) = ™ mod 3127

Functions

Pseudorandom Decrypting the message we get that

Numbers

Representation
of Integers d

() = 12257 mod 3127 =112
SEL d(2960) = 29607 mod 3127 = 114

(0643)

(0325)

Algorithm

= 643" mod 3127 = 2021
= 325" mod 3127 = 1809

C.R.T.
Cryptography

Caesar Cipher
Affine Cipher

107 /109

\Ameeme Public-Key Cryptography

i Cracking RSA - Example

Number
Theory:

AP Using the Euclidean algorithm, b = a~! = 79. Thus, the
COF23 decryption function is

Introduction

Hash d(z) = ™ mod 3127

Functions

Pseudorandom Decrypting the message we get that

Numbers

Representation

o Integers d(1225) = 1225 mod 3127 =112
R d(2960) = 29607 mod 3127 = 114
R d(0643) = 643™ mod 3127 = 2021
Cruptogranty d(0325) = 325" mod 3127 = 1809
d(1884) = 1884™ mod 3127 = 1407

Affine Cipher

108 /109

\Ameeme Public-Key Cryptography

i Cracking RSA - Example

Number
Theory:

AP Using the Euclidean algorithm, b = a~! = 79. Thus, the
COF23 decryption function is

Introduction

Hash d(z) = ™ mod 3127

Functions

Pseudorandom Decrypting the message we get that

Numbers

Representation

o Integers d(1225) = 1225 mod 3127 =112
R d(2960) = 29607 mod 3127 = 114
R d(0643) = 643™ mod 3127 = 2021
Cruptogranty d(0325) = 325" mod 3127 = 1809
d(1884) = 1884™ mod 3127 = 1407

Affine Cipher

Thus, the message is “ALAN TURING".

109 /109

	Introduction
	Hash Functions
	Pseudorandom Numbers
	Representation of Integers
	Integer Operations
	Modular Exponentiation

	Euclid's Algorithm
	Computing the inverse
	Solving a linear congruence

	C.R.T.
	Arithmetic

	Cryptography
	Caesar Cipher
	Affine Cipher
	RSA

