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Results from Number Theory have countless applications in

mathematics as well as in practical applications including
Hash . . . .
Functions security, memory management, authentication, coding theory,
s ctc. We will only examine (in breadth) a few here.
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Introduction Some notation: Z,, = {0,1,2,...,m —2,m — 1}
Hash
Functions

Define a hash function h : Z — Z,, as
Pseudorandom
Numbers

Representation h(k) = k mod m

of Integers

Aot That is, h maps all integers into a subset of size m by

CRT. computing the remainder of k/m.

Cryptography
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o In general, a hash function should have the following properties

Introduction @ It must be easily computable.

Hash
Functions

@ It should distribute items as evenly as possible among all

Pseudorandom values addresses. To this end, m is usually chosen to be a
Numbers . . . .

. A prime number. It is also common practice to define a hash
epresentation . . .

of Integers function that is dependent on each bit of a key

Euclid's

Algorithm @ It must be an onto function (surjective).

C.R.T.
Hashing is so useful that many languages have support for

hashing (perl, Lisp, Python).

Cryptography



Nebisda Hash Functions IlI

Lincoln

Number
Theory:
Applications

However, the function is clearly not one-to-one. When two

CSE235 . ..
elements, x1 # xo hash to the same value, we call it a collision.

Introduction

= There are many methods to resolve collisions, here are just a
as!

Functions

few.

Pseudorandom
Numbers

) A @ Open Hashing (aka separate chaining) — each hash address
epresentation

of Integers is the head of a linked list. When collisions occur, the new
Euclid's key is appended to the end of the list.

Algorithm
CRT. @ Closed Hashing (aka open addressing) — when collisions

Cryptography occur, we attempt to hash the item into an adjacent hash
address. This is known as linear probing.
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Many applications, such as randomized algorithms, require that

we have access to a random source of information (random
numbers).

Introduction

Hash
Functions

Pseudorandom

Numbers However, there is not truly random source in existence, only
MW v cak random sources: sources that appear random, but for
:'T_:gers which we do not know the probability distribution of events.
uclid’s

Hleerthm Pseudorandom numbers are numbers that are generated from
weak random sources such that their distribution is “random

enough”.

CR.T.

Cryptography
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Theory: One method for generating pseudorandom numbers is the

Applications . .
linear congruential method.
CSE235

Introduction Choose four integers:
Hash
Functions @ m, the modulus,

Pseudorandom
Numbers

@ a, the multiplier,

Representation @ c the increment and
of Integers
Euclid’s @ 1 the seed.
Algorithm
R Such that the following hold:
Cryptography
e2<a<m
e 0<c<m

e 0z, <m
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Number

Our goal will be to generate a sequence of pseudorandom
Theory:
Applications numbers,

CSE235 {ntniy

Introduction with 0 < z,, < m by using the congruence
Hash
F .
unctions xn+1 — (al‘n + C) mod m
Pseudorandom
Numbers

Representation

of ntegers For certain choices of m, a, ¢, z¢, the sequence {x, } becomes
Euclid’s periodic. That is, after a certain point, the sequence begins to

Algorith 1
B repeat. Low periods lead to poor generators.
CR.T.

Cryptography Furthermore, some choices are better than others; a generator
that creates a sequence 0,5,0,5,0,5, ... is obvious bad—its
not uniformly distributed.

For these reasons, very large numbers are used in practice.
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Linear Congruence Method

Example

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

@ Znt1 = (azxy + ¢) mod m
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Linear Congruence Method

Example

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

@ Znt1 = (azxy + ¢) mod m
o z1=(5-20+2) mod 17=0
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Linear Congruence Method

Example

Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as

follows.
@ Znt1 = (azxy + ¢) mod m
o z1=(5-20+2) mod 17=0
@ zo=(5-21+2) mod 17 =2
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Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions e 11 = (5 - Lo —+ 2) mod 17 = 0
Pseudorandom ° Iy — (5 I + 2) mod 17=2

Numbers
Representation ° I3 = (5 - Ty SIE 2) mod 17 =12

of Integers

Euclid's
Algorithm

CRT.

Cryptography
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Let m = 17,a = 5,¢ = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions e 11 = (5 - Lo —+ 2) mod 17 = 0
Numbere @ z3=(5-z1+2) mod 17 =2
el o o — (525 +2) mod 17 = 12
Euclid’s @ 4= (5 - x3 + 2) mod 17 =11

Algorithm
CR.T.

Cryptography
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Let m = 17,a = 5,¢ = 2,29 = 3. Then the sequence is as
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Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

FumETE @z =(5-29+2) mod 17=0
Numbere @ z3=(5-z1+2) mod 17 =2
il o x5 = (57> +2) mod 17 = 12
;E\T[;C(Li:ij;im @ zy=(5-x3+2) mod 17 =11
CRT. @ x5=(5-24+2) mod 17=6

Cryptography

14 /109



\areed Linear Congruence Method

Lincoln [ SNETRTo][S

Number E |
Theory: Xamp (S
Applications )
Let m = 17,a = 5,¢ = 2,29 = 3. Then the sequence is as
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Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions e 11 = (5 - Lo —+ 2) mod 17 = 0
Numbere @ z3=(5-z1+2) mod 17 =2
bl © 3 = (5 22 +2) mod 17 = 12
i-f;(l)i:iit';m @ 1y = (5 -x3 + 2) mod 17 =11
CRT. @ x5=(5-24+2) mod 17=6
Cryptography @ z6 = (5 x5+ 2) mod 17 = 15
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Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions e 11 = (5 - Lo —+ 2 mod 17 = 0

Pseudorandom

)
Numbers @ z3=(5-z1+2) mod 17 =2
o g o x3=(5-22+2) mod 17 = 12
Buclids o 4= (5-23+2) mod 17 =11
CRT. @ x5=(5-24+2) mod 17=6
Crptography o 26 = (5 25 +2) mod 17 = 15
o z7=(5-26+2) mod 17=9
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Let m = 17,a = 5,c = 2,29 = 3. Then the sequence is as
follows.

CSE235

Introduction
" @ Znt1 = (azxy + ¢) mod m
EN

Functions o z1=(5-20+2)mod17=0
Numbere @ z3=(5-z1+2) mod 17 =2
il © 3 — (5 3+ 2) mod 17 = 12
Eucligs o 4= (5-23+2) mod 17 =11
CRT @ x5=(5-24+2) mod 17=6
Cryptography @ z6 = (5 x5+ 2) mod 17 = 15

@ z7=(5-26+2) mod 17=9

@ zg = (5 27+ 2) mod 17 = 13 etc.

17/109
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This should be old-hat to you, but we review it to be complete

Introduction
o (it is also discussed in great detail in your textbook).
Functions
Any integer n can be uniquely expressed in any base b by the

Pseudorandom

Numbers following expression.

Representation
of Integers

= n=apb® + ap_ 0"+ -+ agb® + arb + ag

Modular
Exponentiation

Euclid’s In the expression, each coefficient a; is an integer between 0

Algorith | i
gorithm and b — 1 inclusive.
C.R.T.

Cryptography
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b = 8, gives us the octal representation.

Hash b = 16 gives us the hexadecimal representation.
ELncticls b = 10 gives us our usual decimal system.

Pseudorandom
Numbers We use the notatiOn

Representation
of Integers
Ortons (aak—1---azarao)s

Modular
Exponentiation

Introduction

For b = 10, we omit the parentheses and subscript. We also
omit leading Os.

Euclid's
Algorithm

CRT.

Cryptography
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Introduction (B9)16 = 11 : ]‘61 + 9 . 160

Hash = 176 +9 =185

Functions (271)g = 2.824+7-81+1.-89=128+4+56+1
Pseudorandom — 185

Numbers

FEpemmeeen (1011 1001)y = 1-274+0-2641-254+1-2441.23

+0-22+40-2' +1-20 =185
Operations

Modular

Exponentiation You can verify the fo”owing on your own:
Euclid’s
Algorithm

CRT. 134 = (1000 0110)2 = (206)s = (86)16

Cryptography

44613 = (1010 1110 0100 0101)y = (127105)s = (AE45)16

20 /109
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CSE235
Introduction . X
INPUT . A nonnegative integer n and a base b.
Hash .
oS OuTPUT : The base b expansion of n.
Pseudorandom qg—n
Numbers k—0

Representation

WHILE g # 0 DO
of Integers

ap <— q mod b

Integer

Operations q
— | 2
Modular q |— b J
Exponentiation
k—k+1

Euclid's

Algorithm END

0N O AW N =

CRT. output (ax_1ax_2---aiap)

Cryptography

What is its complexity?

21/109
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If not, we can go through some examples.

Introduction

Hash In the textbook, you have 3 algorithms for computing:

Functions

Pseudorandom
Numbers

Representation @ Product of two integers in binary expansion; runs in O(n?)

of Integers

Integer (an algorithm that runs in O(n!-58%) exists).

Operations

E @ div and mod for

Euclid's

Algorithm q = a diV d

CRT. r = amodd

© Addition of two integers in binary expansion; runs in O(n).

Cryptography

The algorithm runs in O(qloga) but an algorithm that
runs in O(log qlog a) exists.
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€Sl modular exponentiation.

Introduction

Say we want to compute

Hash

Functions

Pseudorandom an mod m

Numbers

R g . . )

il Where 1 is a very large integer. We could simply compute
Integer

Operations

’éﬂx%il:]l:;tiation [0 6 I 8

Euclid's n times

Algorithm
C.R.T. . i
We make sure to mod each time we multiply to prevent the

product from growing too big. This requires O(n) operations.

Cryptography
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Modular Exponentiation Il

squaring of the base,

8

a,a?,a*, a8, .

requiring log n operations instead.

Formally, we note that

- abk2’€+bk,12k—1+-~~+b12+bo

= «

kak X abk—12k71

X - x a2t x o

So we can compute ' by evaluating each term as

b2 — {

«
1

91

ifb;=1
ifb; =0

We can do better. Intuitively, we can perform a repeated

bo
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Introduction We can save computation because we can simply square
Hash previous values:

Functions

2t _ o 2i71\2
Pseudorandom G (a )

Numbers

e Ve still evaluate each term independently however, since we

of Integers

- will need it in the next term (though the accumulated value is

Operations

Moduar only multiplied by 1).
Euclid's
Algorithm

CRT.

Cryptography
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MODULAR EXPONENTIATION
Number
Theory:

Aspifeiens INPUT : Integers a,m and n = (bgbg—1 ...b1bo) in binary.

CSE235 OuTPUT :a”™ mod m
1 term =«
Introduction 2 IF (bO — 1) THEN
Hash 3 product = «
Functions
4 END
Pseudorandom 5
Numbers ELSE
6 product = 1
Representation
of Integers 7 END
Integer -
R 8 FORi=1...k DO
Modular 9 term = term X term mod m
Exponentiation
Eudlid's 10 IF (b; = 1) THEN
Algorithm 11 product = product X term mod m
C.R.T. 12 END
Cryptography 13 END

14 output product

26 /109
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226 mod 17 using Modular Exponentiation.

Compute 1

Introduction

Hash

Functions
1[1 [0 [1]0 [=(26)

Pseudorandom

Numbers 4 3 2 1 _ |

Representation

of Integers term
Int:

it product

Modular
Exponentiation

Euclid's
Algorithm

CRT.

Cryptography
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Compute 1226

Introduction

mod 17 using Modular Exponentiation.

Hash
Functions

Pseudorandom 1 ]- 0

Numbers 4 3 2

Representation
of Integers

Integer
Operations
Modular

0 | =(26)9
- i

12 | term

1 | product

Exponentiation

Euclid's
Algorithm

CRT.

Cryptography

28 /109
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Compute 1226

Introduction

mod 17 using Modular Exponentiation.

Hash
Functions

Pseudorandom 1 ]- 0

Numbers 4 3 2

Representation
of Integers

Integer
Operations

Modular

1[0 [ =(26)
1]- i

8| 12 | term
8|1 | product

Exponentiation

Euclid's
Algorithm

CRT.

Cryptography
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Introduction

mod 17 using Modular Exponentiation.

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers
Integer
Operations
Modular
Exponentiation
Euclid's
Algorithm

CRT.

Cryptography

0 [1]0 | =(26)
2 | 1]- i

13| 8| 12 | term

8 | 8|1 | product
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1 |0 [1]0 |=(26)
3 12 |1]- i

16 | 13 | 8 | 12 | term

9 |8 | 8|1 | product
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Compute 122 mod 17 using Modular Exponentiation.

Introduction

Hash

Functions

Pseudorandom 1 1 0 1 0 = (26)2
Numbers 4 2 1 _ |
e 1116 13]8 |12 term
Opesations 919 |8 | 8|1 | product

Modular
Exponentiation

Euclid's
Algorithm

CRT.

Cryptography



Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Integer
Operations

Modular

Exponentiation
Euclid's
Algorithm
CR.T.

Cryptography

33/109

Binary Exponentiation

Example

Compute 122 mod 17 using Modular Exponentiation.

Thus,

1{1 [0 [1]|0 |=(26)
413 |2 |1]- i
1116|138 |12 | term
919 |8 |8]|1 | product

122 mod 17 =9
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Introduction

o Recall that we can find the ged (and thus lem) by finding the
Functions prime factorization of the two integers.

Pseudorandom

Numbers However, the only algorithms known for doing this are
Nl exponential (indeed, computer security depends on this).

of Integers

e . L .
i We can, however, compute the gcd in polynomial time using

Computing the Euclid’s Algorithm.

inverse

Solving a linear
congruence

CRT.

Cryptography
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Consider finding the ged(184,1768). Dividing the large by the
smaller, we get that

Introduction

Hash
Functions

Pseudorandom 1768 - 184 . 9 + 112

Numbers

il Using algebra, we can reason that any divisor of 184 and 1768
must also be a divisor of the remainder, 112. Thus,

Euclid's
Algorithm
Computing the

ged (184, 1768) = ged(184,112)

Solving a linear
congruence

CRT.

Cryptography
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Euclid’s Algorithm |l

Intuition

Continuing with our division we eventually get that

ged(184,1768) = ged(184,112)
= gcd(184,72)
ged(184, 40
(
(
(

)
ged(184,24)
ged (184, 16)
= gcd(184,8) =

This concept is formally stated in the following Lemma.

Leta =bq+r, a,b,q,r € Z, then

ng(aa b) = ng(ba T‘)
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The algorithm we present here is actually the Extended
Introduction Euclidean Algorithm. It keeps track of more information to find
Hash integers such that the gcd can be expressed as a /inear

Functions

combination.

Pseudorandom
Numbers

Representation

f | .. . o 5
o eEes If a and b are positive integers, then there exist integers s,t
Euclid's
Algorithm SUCh that

o e ged(a, b) = sa + tb

Solving a linear
congruence

CRT.

Cryptography

37/109



InPUT : Two positive integers a, b.

OutpUT : r = ged(a, b) and s, t such that sa + tb = ged(a, b).
1 ap=a,bg=0
2 tp=0,t=1
3 s0=1,5=0
4 q=|3
5 r=ag—qbo
6 WHILE r > 0 DO
7 temp = to — qt
8 to = t,t = temp
9 temp = sp — ¢s
10 sp = 8,8 = temp
11 ag =bg, bg =1
12 q=1[32], 7 =a0—qbo
13 IF r > 0 THEN
14 ged =7
15 END
16 END

17 output ged, s,t

Algorithm 1. EXTENDEDEUCLIDIANALGORITHM



Euclid’'s Algorithm

Example

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation

of Integers

Euclid's
Algorithm
Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography




Euclid’'s Algorithm

Example

Nebiaska

Lincoln

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation

of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography




e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography




e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography




e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation

of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography




e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash

Functions

Pseudorandom
Numbers

Representation

of Integers

Euclid's
Algorithm

Computing the
inverse

Solving a linear
congruence

CRT.

Cryptography




e Euclid’s Algorithm

i Example

Number
Theory:
Applications

CSE235

Introduction

Hash
Functions

Pseudorandom
Numbers

Representation
of Integers

Euclid's
Algorithm
s Therefore,

Solving a linear
congruence

Chr ged(27,58) = 1 = (—15)27 + (7)58

Cryptography
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CSE235

ged (25480, 26775) = 25480s + 26775t

Introduction

Hash
Functions

Pseudorandom a0 bo to L 50 s q r
Numbers 25480 | 26775 | O 1 1 0 0 | 25480
S;ﬁ:fzzggﬁm 26775 | 25480 | 1 0 0 1 1 1295
p—— 25480 | 1295 |0 1 1 -1 |19 | 875

- 1295 | 875 1 -19 -1 |20 |1 |420
e lnear 875 420 -19 120 |20 | -21 |2 |35
C:T 420 35 20 |59 |-21 |62 |12 |0
CoptoBrEeny Therefore,

gcd (25480, 26775) = 35 = (62)25480 + (—59)26775
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@ Using the Euclid’s Algorithm, we can compute

g r = ged(a, b), where a,b,r are integers.
Hash
Functions @ Using the Extended Euclide's Algorithm, we can compute

Pseudorandom the integers r, s, such that ged(a,b) = r = sa + tb.

Numbers

Representation . f .

of Integers We can use the Extended Euclide's Algorithm to:
Euclid’'s
alsgiin e Compute the inverse of an integer a modulo m, where

Computing the

- ged(a,m)=1. (The inverse of a exists and is unique
modulo m when ged(a, m)=1.)

congruence
CR.T.
Cryptography @ Solve an equation of linear congruence az = b(mod m),

where ged(a, m)=1
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lhiodictio Problem: Compute the inverse of a modulo m with

A ged(a, m)=1, that is find a~! such that a.a™! = 1(mod m)

Pseudorandom

Numbers ng(a,m) = 1 = 1 = sa + tm
Representation USing the EEA, we can flnd S and t.

of Integers

Euclid’s 1 = sa+tm = sa(mod m) = s =a~ L.

Algorithm
Computing the

Example: Find the inverse of 5 modulo 9.

Solving a linear
congruence

CRT.

Cryptography



e Euclid’s Algorithm

[ Solving a linear congruence

Number
Theory:
Applications

. Problem: Solve ax = b(mod m), where ged(a, m)=1.

Introduction

Hoch Solution:

as

Functions

e @ Find a—! the inverse of a module m.

Numbers

S o Multiply the two terms of az = b(mod m) by a™!.

of Integers ar = b(mod m) =
Euclid’s —1 _ —1

Algorithm a "ar =a b(mod m) =
T x = a tb(mod m).

Solving a linear
congruence

CRT. Example: Solve 5z = 6(mod 9).

Cryptography
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Cryptography

Chinese Remainder Theorem

We've already seen an application of linear congruences
(pseudorandom number generators).

However, systems of linear congruences also have many
applications (as we will see).

A system of linear congruences is simply a set of equivalences
over a single variable.

x = 5(mod 2)
x = 1(mod 5)
x = 6(mod 9)
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Pseudorandom r = a1 (mOd ml)
Numbers _
x = az(mod mg)
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Algorithm x = ap(mod my)

AR has a unique solution modulo m = mima - - - my,.
Cryptography

How do we find such a solution?
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@ Compute m = mimsg - --my,.
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Chinese Remainder Theorem

Proof/Procedure

This is a good example of a constructive proof; the
construction gives us a procedure by which to solve the system.
The process is as follows.

@ Compute m = mimsg - --my,.
@ Foreach k=1,2,...,n compute

© Foreach k=1,2,...,n compute the inverse, y; of
M}, mod my, (note these are guaranteed to exist by a
Theorem in the previous slide set).
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Chinese Remainder Theorem
Proof/Procedure

This is a good example of a constructive proof; the
construction gives us a procedure by which to solve the system.
The process is as follows.

@ Compute m = mimsg - --my,.
@ Foreach k=1,2,...,n compute

M= ™
my
© Foreach k=1,2,...,n compute the inverse, y; of

M}, mod my, (note these are guaranteed to exist by a
Theorem in the previous slide set).
@ The solution is the sum

n
v = axMys
k=1
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Cryptography _ 1260
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Functions
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To solve the system in the previous example, it was necessary to
determine the inverses of M;, modulo mi—how'd we do that?
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Pseudorandom One Way (as in thls Case) is to try eVery Single element @
Numbers 2 S a S m — 1 to see if
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Euclid’s aMy = 1(m0d m)
Algorithm

But there is a more efficient way that we already know how to
et do—Euclid’s Algorithm!

Cryptography
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Computing Inverses

Lemma

Let a,b be relatively prime. Then the linear combination
computed by the Extended Euclidean Algorithm,

ged(a, b) = sa + th

gives the inverse of a modulo b; i.e. s = a~! modulo b.

Note that £ = b~! modulo a.

Also note that it may be necessary to take the modulo of the
result.
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Hash arithmetic operations on very large integers.
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Castlll  Such operations become inefficient if we perform them bitwise.
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Mdssiuiadl Instead, we can use Chinese Remainder Representations to

of Integers

S perform arithmetic operations of large integers using smaller
Algorithm integers saving computations. Once operations have been

C.R.T. . .
performed, we can uniquely recover the large integer result.
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Cryptography
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., My be pairwise relatively prime integers,

m = 1mima---Mpy

Representation

o s Then every integer a,0 < a < m can be uniquely represented

Enclidis by n remainders over my;; i.e.
Algorithm

CRT.
Arithmetic

(a mod my,a mod mag,...,a mod my)
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62 /109




\Areem Chinese Remainder Representations |

Lincoln Exam o] le

Number
Theory:
Applications

CSE235

Let mq = 47, my = 48, m3 = 49, m4 = 53. Compute
Introduction 2,459,123 4 789, 123 using Chinese Remainder
hizsh Representations.

Functions

Pseudorandom
Numbers

Reoresentation By the previous lemma, we can represent any integer up to
of Integers 5,858,832 by four integers all less than 53.

Euclid's
Algorithm F| rst
1

CRT. 2,459,123 mod 47 = 36
2,459,123 mod 48 = 35
2,459,123 mod 49 = 9

2,459,123 mod 53 = 29

Cryptography
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789,123 mod 47 = 40
Introduction 789, 123 mOd 48 — 3
fehy 789,123 mod 49 = 27

789,123 mod 53 = 6
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s S0 we've reduced our calculations to computing (coordinate

f | . .
of integers wise) the addition:
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Algorithm

crr (36,35,9,29) + (40,3,27,6) = (76,38,36,35)
= (29,38, 36,35)

Cryptography
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fix an secret key, an integer k such that 0 < k < m. Then the
encryption and decryption functions are
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Numbers dk (y) _ (y N k) mOd m

Representation
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Euclid’s respectively.
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CRT. Cryptographic functions must be one-to-one (why?). It is left
Cryptography as an exercise to verify that this Caesar cipher satisfies this
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“"HANK" and decrypt “KLHU".
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so the encrypted word is "OHUR".
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Example Continued

“KLHU" is encoded as (10-11-7-20), so

(10 — 7) mod 26
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Affine Cipher |

Clearly, the Caesar cipher is insecure—the key space is only as
large as the alphabet.

An alternative (though still not secure) is what is known as an
affine cipher. Here the encryption and decryption functions are
as follows.

ex(z) = (ax+b) modm
dp(y) = a '(y—0b) modm

Question: How big is the key space?
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Public-Key Cryptography |

The problem with the Caesar & Affine ciphers (aside from the

fact that they are insecure) is that you still need a secure way
to exchange the keys in order to communicate.

Public key cryptosystems solve this problem.

One can publish a public key.
Anyone can encrypt messages.
However, decryption is done with a private key.

The system is secure if no one can feasibly derive the
private key from the public one.

Essentially, encryption should be computationally easy,
while decryption should be computationally hard (without
the private key).

Such protocols use what are called “trap-door functions”.
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