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R e For a finite set S = {s1,s2,...,s,}, we can prove that
Niore P(z) holds for each element because of the equivalence,

Examples

P(s1) A P(s2) A -+ A P(sp)

@ We can use universal generalization for infinite sets.

@ Another, more sophisticated way is to use Induction.
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This is the basis of the most widely used proof technique:
Induction.
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The Well Ordering Principle |

Why is induction a legitimate proof technique?

At its heart is the Well Ordering Principle.

Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a base
case.

We can then proceed to establish that the set of integers
n > ng such that P(n) is false is actually empty.

Thus, induction (both “weak” and “strong” forms) are logical
equivalences of the well-ordering principle.
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Examples P(k') — P(k + 1) (2)
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Induction

Vore are true. We can now use a form of universal generalization as
Examples follows.

Say we choose an element from the universe of discourse c¢. We
wish to establish that P(c) is true. If ¢ = ngy then we are done.
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Via a finite number of steps (c — ng), we get that P(c) is true.
Since ¢ was arbitrary, the universal generalization is established.

Vn > noP(n)
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Formal Definition

Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose
@ P is true for some particular integer ny; P(ng) = 1.

@ If P is true for some particular integer k > ng then it is
true for k + 1.

Then P is true for all integers n > ngy; i.e.
Vn > nogP(n)

is true.
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[rerer @ Showing that P(ng) holds for some initial integer ng is
Preliminaries called the Basis Step. The statement P(ny) itself is called
s the inductive hypothesis.

Statement
Examples @ Showing the implication P(k) — P(k + 1) for every
Strong k > ng is called the Induction Step.

Induction

More @ Together, induction can be expressed as an inference rule.

Examples

(P(no) AVk > noP(k) — P(k+1)) — ¥n > noP(n)
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More
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25 =52 < 25 =32

and so P(5) is true and thus the induction hypothesis holds.
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2k > k? + 5k > k* + 2k + 1 = (k+1)2
Using transitivity, we get that

(k+1)% < 2k% < 2FF1
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Now assume that P(k) holds for some k > 1, so
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5o HE+ I
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k+1 k

Y =142 4B (k1) =) 2 (k+ 1)

=1 =1
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Thus, by the principle of mathematical induction,

"N, n(n+1)(2n+1)
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which is certainly divisible by 3.

We next assume that P(k) holds. That is, we assume that
there exists an integer £ such that

2%k 1 =3¢
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Continued

Note that

92(k+1) _

1=4.2%_1

By the induction hypothesis, 22¥ = 3¢ 4 1, applying this we get

that

22(k+1) -1

= 4(30+1)—1
1204+ 41
12 + 3

= 3(40+1)
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—onee 22(k+1) _ 1 — 430+1) -1

Isntdrzrclf;ion — 126 + 4 - 1

More = 12€ + 3

Examples _ 3(4€ + 1)

And we are done, since 3 divides the RHS, it must divide the
LHS. Thus, by the principle of mathematical induction, 22n _ q
is divisible by 3 for all n > 1.
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Since k > 4, it certainly is the case that kK + 1 > 2. Therefore,
we have that

(k+1)! = (k4 1)k! > 2.2~ = 2~F1

So by the principle of mathematical induction, we have our
desired result. &l
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Let m € Z and suppose that z =y (mod m). Then for all
n>1,

The base case here is trivial as it is encompassed by the
assumption.

Now assume that it is true for some k > 1;

¥ =% (mod m)
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Continued

still a congruence, we have

x -

X

k

=y-

Y

k

Since multiplication of corresponding sides of a congruence is

(mod m)
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2

k k
D =2
i=1

i=1
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We now consider the summation for (k + 1):

k+1

k
it =>4 (k+1)°
=1 =1
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So by the PMI, the equality holds. O
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The Bad Example

Consider this “proof” that all of you will receive the same
grade.

Proof.

Let P(n) be the statement that every set of n students
receives the same grade. Clearly P(1) is true, so the base case
is satisfied.

Now assume that P(k —1) is true. Given a group of k students,
apply P(k —1) to the subset {si,s2,...s,—1}. Now, separately
apply the induction hypothesis to the subset {so, s3, ..., sk}
Combining these two facts tells us that P(k) is true. Thus,
P(n) is true for all students. O

v
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The Bad Example - Continued

@ The mistake is not the base case, P(1) is true.

@ Also, it is the case that, say P(73) — P(74), so this
cannot be the mistake.
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Examples e Also, it is the case that, say P(73) — P(74), so this
Strong cannot be the mistake.

Induction

More

Examples The error is in P(1) — P(2) which is certainly not true; we
cannot combine the two inductive hypotheses to get P(2).
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s The following are equivalent.

s @ The Well Ordering Principle

@ The Principle of Mathematical Induction

@ The Principle of Mathematical Induction, Strong Form
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Theorem (Principle of Mathematical Induction (Strong

Form))

Given a statement P concerning the integer n, suppose

@ P is true for some particular integer ny; P(ng) = 1.

@ Ifk > ng is any integer and P is true for all integers [ in
the range ng <l < k, then it is true also for k.

Then P is true for all integers n > ny; i.e.
V(n > ng)P(n)

is true.
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Verifying the base case for n = 1 is straightforward,;

ioon o fl@wot+h) = flwo) . (zo+h)—wmo
fa) = finy n L —

More
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From the inductive hypothesis, the first derivative is kgk—1
and the base case gives us the second derivative.
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Example
Continued

Now assume that the inductive hypothesis holds for some k;
i.e. for f(z) = xF,
f'(w) = ka~t

Now consider fo(x) = 2#+1 = 2¥ . 2. Using the product rule
we observe that

fi(@) = (@)@ +a* - (a)

From the inductive hypothesis, the first derivative is kgk—1
and the base case gives us the second derivative.  Thus,

i) = kabl.z 4k
= kaF 4 2F
= (k+1)z*
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Introduction

Pralara Recall that the Fundamental Theorem of Arithmetic states that
Formal any integer n > 2 can be written as a unique product of primes.

Statement

Examples We'll use the strong form of induction to prove this.

Strong

Induction Let P(n) be the statement “n can be written as a product of
More primes.”

Examples

Clearly, P(2) is true since 2 is a prime itself. Thus the base
case holds.
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CSE235 predicate P holds for all integers less than some integer k > 2;
i.e. we assume that

Introduction

:Zrelimlinaries P(2) A P(S) ANERRIAN P(k)

Sf;:;lanent i

Examples Is true.

Strong We want to show that this implies P(k + 1) holds. We

consider two cases.

More
Examples

If £+ 1is prime, then P(k+ 1) holds and we are done.
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i.e. we assume that

Introduction
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P2)APB)A-- A P(k)

Formal

Statement .

Examples IS true.

D We want to show that this implies P(k + 1) holds. We

consider two cases.

More
Examples

If £+ 1is prime, then P(k+ 1) holds and we are done.

Else, kK + 1 is a composite and so it has factors u, v such that
2 <w,v < k+ 1 such that

u-v=~k+1
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Introduction We now apply the inductive hypothesis; both u and v are less
Preliminaries than k£ + 1 so they can both be written as a unique product of
gormal primeS;

tatement

Examples U = Hp7/7 v = Hp]

s g J

trong

Induction

Therefore,

More
Examples

kt1= (1:[1%) 1;[10]'

and so by the strong form of the PMI, P(k + 1) holds. O
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Statement

Examples

If a,b € N are such that gcd(a,b) = 1 then there are integers
Induction 571; SUCh that

Strong

gcd(a,b) =1 = sa+tb

More
Examples

We will prove this using the strong form of induction.
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Let P(n) be the statement
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Formal

Statement a,b € NAged(a,b) =1Na+b=n=3s,t € Z,as+th=1

Examples

S . .
e Our base case here is when n = 2 since a = b = 1.

More
Examples

For s = 1,t = 0, the statement P(2) is satisfied since

st+bt=1-1+1-0=1
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Pl We now form the inductive hypothesis. Suppose n € N,n > 2
£ormal and assume that P(k) is true for all k£ with 2 < k < n.

Statement

Examples

Now suppose that for a,b € N,
Strong
Induction

ged(a,b) =1ANa+b=n+1
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We consider three cases.
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R In this case

Statement

Eramples ged(a,b) = ged(a,a) by definition
Strong e
Induction = a by definition

=1 by assumption

More
Examples

Therefore, since the gcd is one, it must be the case that
a =b =1 and so we simply have the base case, P(2).
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Furthermore,

2<a+(b—a)=n+1—-a<n
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R and conclude that P(n+ 1 —a) = P(a+ (b — a)) is true.

Preliminaries

. This implies that there exist integers sg, tg such that
Statement

Examples aSO + (b - G/)to - 1
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Induction and SO
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CL(SO — to) +btg =1
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Strong Form Example
GCD

Since a + (b — a) < n, we can apply the inductive hypothesis
and conclude that P(n+ 1 —a) = P(a+ (b — a)) is true.

This implies that there exist integers sg, tg such that
aso+ (b—a)tp =1

and so
CL(SO — to) +btg =1

So for s = 59 — tg and t = £y we get
as+bt=1

Thus, P(n+ 1) is established for this case.
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Formal Case 3 a > b This is completely symmetric to case 2; we use
a — b instead of b — a.

Examples

Strong
Induction

Since all three cases handle every possibility, we've established
that P(n + 1) is true and so by the strong PMI, the lemma
holds. O

More
Examples
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