Functions

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Spring 2006

Computer Science & Engineering 235
Introduction to Discrete Mathematics
Sections 1.8 of Rosen
cse235@cse.unl.edu

Introduction

You’ve already encountered functions throughout your education.

\[f(x, y) = x + y \]
\[f(x) = x \]
\[f(x) = \sin x \]

Here, however, we will study functions on discrete domains and ranges. Moreover, we generalize functions to mappings. Thus, there may not always be a “nice” way of writing functions like above.

Definition

Function

A function \(f \) from a set \(A \) to a set \(B \) is an assignment of exactly one element of \(B \) to each element of \(A \). We write \(f(a) = b \) if \(b \) is the unique element of \(B \) assigned by the function \(f \) to the element \(a \in A \). If \(f \) is a function from \(A \) to \(B \), we write

\[f : A \to B \]

This can be read as “\(f \) maps \(A \) to \(B \)”.

Note the subtlety:

- Each and every element in \(A \) has a single mapping.
- Each element in \(B \) may be mapped to by several elements in \(A \) or not at all.

Definitions

Terminology

Definition

Let \(f : A \to B \) and let \(f(a) = b \). Then we use the following terminology:

- \(A \) is the domain of \(f \), denoted \(\text{dom}(f) \).
- \(B \) is the codomain of \(f \).
- \(b \) is the image of \(a \).
- \(a \) is the preimage of \(b \).
- The range of \(f \) is the set of all images of elements of \(A \), denoted \(\text{rng}(f) \).

Definitions

Visualization

A function, \(f : A \to B \).

A function, \(f : A \to B \).

Definition I

More Definitions

Definition

Let \(f_1 \) and \(f_2 \) be functions from a set \(A \) to \(\mathbb{R} \). Then \(f_1 + f_2 \) and \(f_1f_2 \) are also functions from \(A \) to \(\mathbb{R} \) defined by

\[(f_1 + f_2)(x) = f_1(x) + f_2(x) \]
\[(f_1f_2)(x) = f_1(x)f_2(x) \]

Example
Definition II

Let \(f_1(x) = x^4 + 2x^2 + 1 \) and \(f_2(x) = 2 - x^2 \) then
\[
(f_1 + f_2)(x) = (x^4 + 2x^2 + 1) + (2 - x^2) = x^4 + 2x^2 + 3
\]
\[
(f_1f_2)(x) = (x^4 + 2x^2 + 1) \cdot (2 - x^2) = -x^6 + 3x^4 + 2
\]

Definition III

Let \(f : A \to B \) and let \(S \subseteq A \). The **image of** \(S \) is the subset of \(B \) that consists of all the images of the elements of \(S \). We denote the image of \(S \) by \(f(S) \), so that
\[
f(S) = \{ f(s) \mid s \in S \}
\]

Note that here, an image is a set rather than an element.

Example

Let

- \(A = \{a_1, a_2, a_3, a_4, a_5\} \)
- \(B = \{b_1, b_2, b_3, b_4\} \)
- \(f = \{(a_1, b_1), (a_2, b_3), (a_3, b_1), (a_4, b_1), (a_5, b_4)\} \)
- \(S = \{a_1, a_3\} \)

Draw a diagram for \(f \).

The image of \(S \) is \(f(S) = \{b_2, b_3\} \)

Definition IV

A function \(f \) whose domain and codomain are subsets of the set of real numbers is called **strictly increasing** if \(f(x) < f(y) \) whenever \(x < y \) and \(x \) and \(y \) are in the domain of \(f \). A function \(f \) is called **strictly decreasing** if \(f(x) > f(y) \) whenever \(x < y \) and \(x \) and \(y \) are in the domain of \(f \).

Injections, Surjections, Bijections I

Definition

A function \(f \) is said to be one-to-one (or **injective**) if
\[
f(x) = f(y) \Rightarrow x = y
\]
for all \(x \) and \(y \) in the domain of \(f \). A function is an **injection** if it is one-to-one.

Intuitively, an injection simply means that each element in \(A \) uniquely maps to an element in \(B \).

It may be useful to think of the contrapositive of this definition:
\[
x \neq y \Rightarrow f(x) \neq f(y)
\]

Injections, Surjections, Bijections II

Definition

A function \(f : A \to B \) is called **onto** (or **surjective**) if for every element \(b \in B \) there is an element \(a \in A \) with \(f(a) = b \). A function is called a **surjection** if it is onto.

Again, intuitively, a surjection means that every element in the codomain is mapped. This implies that the range is the same as the codomain.

Injections, Surjections, Bijections III

Definition

A function \(f \) is a **one-to-one correspondence** (or a **bijection** if it is both one-to-one and onto.

One-to-one correspondences are important because they endow a function with an **inverse**. They also allow us to have a concept of cardinality for infinite sets!

Let’s take a look at a few general examples to get the feel for these definitions.
Function Examples
A Non-function

This is not a function: Both a_1 and a_2 map to more than one element in B.

Function Examples
A Function; Neither One-To-One Nor Onto

This function not one-to-one since a_1 and a_3 both map to b_1. It is not onto either since b_4 is not mapped to by any element in A.

Function Examples
One-To-One, Not Onto

This function is one-to-one since every $a_i \in A$ maps to a unique element in B. However, it is not onto since b_4 is not mapped to by any element in A.

Function Examples
Onto, Not One-To-One

This function is onto since every element $b_i \in B$ is mapped to by some element in A. However, it is not one-to-one since b_3 is mapped to more than one element in A.

Function Examples
A Bijection

This function is a bijection because it is both one-to-one and onto; every element in A maps to a unique element in B and every element in B is mapped by some element in A.

Exercises I
Exercise I

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by

$$f(x) = 2x - 3$$

What is the domain and range of f? Is it onto? One-to-one?

Clearly, $\text{dom}(f) = \mathbb{Z}$. To see what the range is, note that

\[b \in \text{rng}(f) \iff b = 2(a - 2) + 1 \iff b \text{ is odd} \]

\[a \in \mathbb{Z} \]

\[\iff b = 2a - 3 \]
Exercises II
Exercise I

Therefore, the range is the set of all odd integers. Since the range and codomain are different, we can also conclude that \(f \) is not onto.

However, \(f \) is one-to-one. To prove this, note that
\[
f(x_1) = f(x_2) \Rightarrow 2x_1 - 3 = 2x_2 - 3
\Rightarrow x_1 = x_2
\]
follows from simple algebra.

Exercises I
Exercise III

Example
Define \(f : \mathbb{Z} \to \mathbb{Z} \) by
\[
f(x) = x^2 - 5x + 5
\]
Is this function one-to-one? Onto?

It is not one-to-one since for
\[
f(x_1) = f(x_2) \Rightarrow x_1^2 - 5x_1 + 5 = x_2^2 - 5x_2
\Rightarrow x_1^2 - x_2^2 = 5x_1 - 5x_2
\Rightarrow (x_1 + x_2)(x_1 - x_2) = 5(x_1 - x_2)
\Rightarrow x_1 + x_2 = 5
\]

Exercises II
Exercise IV

Example
Define \(f : \mathbb{Z} \to \mathbb{Z} \) by
\[
f(x) = 2x^2 + 7x
\]
Is this function one-to-one? Onto?

Again, since this is a parabola, it cannot be onto (where is the global minimum?).
Inverse Functions I

Definition

Let \(f : A \to B \) be a bijection. The inverse function of \(f \) is the function that assigns to an element \(b \in B \) the unique element \(a \in A \) such that \(f(a) = b \). The inverse function of \(f \) is denoted by \(f^{-1} \). Thus \(f^{-1}(b) = a \) when \(f(a) = b \).

More succinctly, if an inverse exists,
\[
 f(a) = b \iff f^{-1}(b) = a
\]

Examples

Example I

Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by
\[
 f(x) = 2x - 3
\]

What is \(f^{-1} \)?

First, verify that \(f \) is a bijection (it is). To find an inverse, we use substitution:

- Let \(f^{-1}(y) = x \)
- Let \(y = 2x - 3 \) and solve for \(x \)
- Clearly, \(x = \frac{y+3}{2} \) so,
 \[
 f^{-1}(y) = \frac{y+3}{2}.
 \]
Examples

Example II

Example

Let

\[f(x) = x^2 \]

What is \(f^{-1} \)?

No domain/codomain has been specified. Say \(f : \mathbb{R} \to \mathbb{R} \) is \(f \) a bijection? Does an inverse exist?

No, however if we specify that

\[A = \{ x \in \mathbb{R} \mid x \leq 0 \} \]

and

\[B = \{ y \in \mathbb{R} \mid y \geq 0 \} \]

then it becomes a bijection and thus has an inverse.

Examples

Example III

Example

Let

\[f(x) = 2^x \]

What should the domain/codomain be for this to be a bijection?

What is the inverse?

The function should be \(f : \mathbb{R} \to \mathbb{R}^+ \). What happens when we include 0? Restrict either one to \(\mathbb{Z} \)?

Let \(f^{-1}(y) = x \) and \(y = 2^x \), solving for \(x \) we get \(x = \log_2(y) \).

Therefore,

\[f^{-1}(y) = \log_2(y) \]

Composition II

Note the order that you apply a function matters—you go from inner most to outer most.

The composition \(f \circ g \) cannot be defined unless the the range of \(g \) is a subset of the domain of \(f \);

\[f \circ g \text{ is defined } \iff \text{rng}(g) \subseteq \text{dom}(f) \]

It also follows that \(f \circ g \) is not necessarily the same as \(g \circ f \).

Composition of Functions

Figure

\[(f \circ g)(a) \]

The composition of two functions.
Composition
Example I

Let \(f \) and \(g \) be functions, \(\mathbb{R} \rightarrow \mathbb{R} \) defined by
\[
\begin{align*}
 f(x) &= 2x - 3 \\
 g(x) &= x^2 + 1
\end{align*}
\]
What are \(f \circ g \) and \(g \circ f \)?

Note that \(f \) is bijective, thus \(\text{dom}(f) = \text{rng}(f) = \mathbb{R} \). For \(g \), we have that \(\text{dom}(g) = \mathbb{R} \) but that \(\text{rng}(g) = \{ x \in \mathbb{R} \mid x \geq 1 \} \).

Equality

Though intuitive, we formally state what it means for two functions to be equal.

Lemma
Two functions \(f \) and \(g \) are equal if and only if \(\text{dom}(f) = \text{dom}(g) \) and
\[
\forall a \in \text{dom}(f) (f(a) = g(a))
\]

Composition
Example I

Even so, \(\text{rng}(g) \subseteq \text{dom}(f) \) and so \(f \circ g \) is defined. Also, \(\text{rng}(f) \subseteq \text{dom}(g) \) so \(g \circ f \) is defined as well.

\[
\begin{align*}
 (f \circ g)(x) &= g(f(x)) \\
 &= g(2x - 3) \\
 &= (2x - 3)^2 + 1 \\
 &= 4x^2 - 12x + 10
\end{align*}
\]
and
\[
\begin{align*}
 (g \circ f)(x) &= f(g(x)) \\
 &= f(x^2 + 1) \\
 &= 2(x^2 + 1) - 3 \\
 &= 2x^2 - 1
\end{align*}
\]

Associativity

Though the composition of functions is not commutative \((f \circ g \neq g \circ f) \), it is associative.

Lemma
Composition of functions is an associative operation; that is,
\[
(f \circ g) \circ h = f \circ (g \circ h)
\]

Important Functions

Identity Function

Definition
The identity function on a set \(A \) is the function
\[
i : A \rightarrow A
\]
defined by \(i(a) = a \) for all \(a \in A \). This symbol is the Greek letter iota.

One can view the identity function as a composition of a function and its inverse;
\[
i(a) = (f \circ f^{-1})(a)
\]
Moreover, the composition of any function \(f \) with the identity function is itself \(f \);
\[
(f \circ i)(a) = (i \circ f)(a) = f(a)
\]

Inverses & Identity

The identity function, along with the composition operation gives us another characterization for when a function has an inverse.

Theorem
Functions \(f : A \rightarrow B \) and \(g : B \rightarrow A \) are inverses if and only if
\[
g \circ f = i_A \text{ and } f \circ g = i_B
\]
That is,
\[
\forall a \in A, b \in B (g(f(a)) = a \wedge f(g(b)) = b)
\]
Important Functions I

Absolute Value Function

Definition

The absolute value function, denoted $|x|$ is a function $f : \mathbb{R} \to \{y \in \mathbb{R} \mid y \geq 0\}$. Its value is defined by

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$$

Floor & Ceiling Functions

Definition

The floor function, denoted $\lfloor x \rfloor$ is a function $\mathbb{R} \to \mathbb{Z}$. Its value is the largest integer that is less than or equal to x.

The ceiling function, denoted $\lceil x \rceil$ is a function $\mathbb{R} \to \mathbb{Z}$. Its value is the smallest integer that is greater than or equal to x.

Graphical View

Factorial Function

Definition

The factorial function, denoted $n!$ is a function $\mathbb{N} \to \mathbb{Z}^+$. Its value is the product of the first n positive integers.

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Stirling’s Approximation

The factorial function is defined on a discrete domain. In many applications, it is useful to consider a continuous version of the function (say if we want to differentiate it).

To this end, we have Stirling’s Formula:

$$n! \approx \sqrt{2 \pi n} \frac{n^n}{e^n}$$