Functions

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Spring 2006

Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.8 of Rosen cse235@cse.unl.edu

Introduction

You've already encountered *functions* throughout your education.

 $\begin{array}{rcl} f(x,y) &=& x+y\\ f(x) &=& x\\ f(x) &=& \sin x \end{array}$

Here, however, we will study functions on *discrete* domains and ranges. Moreover, we generalize functions to mappings. Thus, there may not always be a "nice" way of writing functions like above.

Definition

Function

Definition

A function f from a set A to a set B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element $a \in A$. If f is a function from A to B, we write

 $f: A \to B$

This can be read as "f maps A to B".

Note the subtlety:

- ▶ Each and every element in A has a *single* mapping.
- \blacktriangleright Each element in B may be mapped to by several elements in A or not at all.

Definitions

Terminology

Definition

Let $f:A \to B$ and let f(a) = b. Then we use the following terminology:

- A is the *domain* of f, denoted dom(f).
- B is the *codomain* of f.
- ▶ b is the *image* of a.
- \blacktriangleright a is the preimage of b.
- The range of f is the set of all images of elements of A, denoted $\operatorname{rng}(f)$.

Definition I

More Definitions

Definition

Let f_1 and f_2 be functions from a set A to $\mathbb R.$ Then f_1+f_2 and f_1f_2 are also functions from A to $\mathbb R$ defined by

$$\begin{array}{rcl} (f_1+f_2)(x) &=& f_1(x)+f_2(x) \\ (f_1f_2)(x) &=& f_1(x)f_2(x) \end{array}$$

Example

Definition II More Definitions

Let $f_1(x) = x^4 + 2x^2 + 1$ and $f_2(x) = 2 - x^2$ then $(f_1 + f_2)(x) = (x^4 + 2x^2 + 1) + (2 - x^2)$

$$= x^4 + x^2 + 3 (f_1 f_2)(x) = (x^4 + 2x^2 + 1) \cdot (2 - x^2) = -x^6 + 3x^2 + 2$$

Definition

Let $f:A\to B$ and let $S\subseteq A.$ The image of S is the subset of B that consists of all the images of the elements of S. We denote the image of S by f(S), so that

$$f(S) = \{f(s) \mid s \in S\}$$

Definition III

More Definitions Note that here, an *image* is a *set* rather than an element.

Example

Let

- $\blacktriangleright A = \{a_1, a_2, a_3, a_4, a_5\}$
- ▶ $B = \{b_1, b_2, b_3, b_4\}$
- $f = \{(a_1, b_2), (a_2, b_3), (a_3, b_3), (a_4, b_1), (a_5, b_4)\}$
- ▶ $S = \{a_1, a_3\}$

Draw a diagram for f.

The *image* of S is $f(S) = \{b_2, b_3\}$

Definition

Definition IV

More Definitions

A function f whose domain and codomain are subsets of the set of real numbers is called *strictly increasing* if f(x) < f(y) whenever x < y and x and y are in the domain of f. A function f is called *strictly decreasing* if f(x) > f(y) whenever x < y and x and y are in the domain of f.

Notes

Injections, Surjections, Bijections I Definitions

Definition

A function f is said to be *one-to-one* (or *injective*) if

$$f(x) = f(y) \Rightarrow x = y$$

for all x and y in the domain of f. A function is an *injection* if it is one-to-one.

Intuitively, an injection simply means that each element in ${\cal A}$ uniquely maps to an element in b.

It may be useful to think of the contrapositive of this definition:

$$x \neq y \Rightarrow f(x) \neq f(y)$$

Injections, Surjections, Bijections II Definitions

Definition

A function $f:A\to B$ is called *onto* (or *surjective*) if for every element $b\in B$ there is an element $a\in A$ with f(a)=b. A function is called a *surjection* if it is onto.

Again, intuitively, a surjection means that every element in the codomain is mapped. This implies that the range is the same as the codomain.

Injections, Surjections, Bijections III Definitions

Definition

A function f is a one-to-one correspondence (or a bijection, if it is both one-to-one and onto.

One-to-one correspondences are important because they endow a function with an *inverse*. They also allow us to have a concept of cardinality for infinite sets!

Let's take a look at a few general examples to get the feel for these definitions.

Notes

Exercises I Exercise I Example Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = 2x - 3What is the domain and range of f? Is it onto? One-to-one? Clearly, dom $(f) = \mathbb{Z}$. To see what the range is, note that $b \in \operatorname{rng}(f) \iff b = 2a - 3 \qquad a \in \mathbb{Z}$ $\iff b = 2(a - 2) + 1$ $\iff b$ is odd

Exercises II

Exercise I

Therefore, the range is the set of all *odd* integers. Since the range and codomain are different, (i.e. $rng(f) \neq \mathbb{Z}$) we can also conclude that f is *not* onto.

However, \boldsymbol{f} is one-to-one. To prove this, note that

$$f(x_1) = f(x_2) \quad \Rightarrow \quad 2x_1 - 3 = 2x_2 - 3$$
$$\Rightarrow \quad x_1 = x_2$$

follows from simple algebra.

Example

Exercises Exercise II

Let \boldsymbol{f} be as before,

f(x) = 2x - 3

but now define $f:\mathbb{N}\to\mathbb{N}.$ What is the domain and range of f? Is it onto? One-to-one?

By changing the domain/codomain in this example, f is not even a function anymore. Consider $f(1)=2\cdot 1-3=-1\not\in\mathbb{N}.$

Exercises I

Exercise III

Example

Define $f:\mathbb{Z}\to\mathbb{Z}$ by

 $f(x) = x^2 - 5x + 5$

Is this function one-to-one? Onto?

It is not one-to-one since for

$$\begin{array}{rcl} f(x_1) = f(x_2) & \Rightarrow & x_1^2 - 5x_1 + 5 = x_2^2 - 5x_2 + 5 \\ & \Rightarrow & x_1^2 - 5x_1 = x_2^2 - 5x_2 \\ & \Rightarrow & x_1^2 - x_2^2 = 5x_1 - 5x_2 \\ & \Rightarrow & (x_1 - x_2)(x_1 + x_2) = 5(x_1 - x_2) \\ & \Rightarrow & (x_1 + x_2) = 5 \end{array}$$

Exercises II Exercise III

Therefore, any $x_1, x_2 \in \mathbb{Z}$ satisfies the equality (i.e. there are an infinite number of solutions). In particular f(2) = f(3) = -1.

It is also not onto. The function is a parabola with a global minimum (calculus exercise) at $(\frac{5}{2},-\frac{5}{4}).$ Therefore, the function fails to map to any integer less than -1.

What would happen if we changed the domain/codomain?

Example

Exercises I

Exercise IV

Define $f: \mathbb{Z} \to \mathbb{Z}$ by

 $f(x) = 2x^2 + 7x$

Is this function one-to-one? Onto?

Again, since this is a parabola, it cannot be onto (where is the global minimum?).

Exercises II Exercise IV

However, it $\ensuremath{\textit{is}}$ one-to-one. We follow a similar argument as before:

$$\begin{aligned} f(x_1) &= f(x_2) &\Rightarrow 2x_1^2 + 7x_1 = 2x_2^2 + 7x_2 \\ &\Rightarrow 2(x_1 - x_2)(x_1 + x_2) = 7(x_2 - x_1) \\ &\Rightarrow (x_1 + x_2) = \frac{7}{2} \end{aligned}$$

But $\frac{7}{2}\not\in\mathbb{Z}$ therefore, it must be the case that $x_1=x_2.$ It follows that f is one-to-one.

Exercises I Exercise V

Example

Define $f: \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = 3x^3 - x$$

Is f one-to-one? Onto?

To see if its one-to-one, again suppose that $f(x_1)=f(x_2)$ for $x_1,x_2\in\mathbb{Z}.$ Then

$$\begin{array}{rcl} 3x_1^3 - x_1 = 3x_2^3 - x_2 & \Rightarrow & 3(x_1^3 - x_2^3) = (x_1 - x_2) \\ & \Rightarrow & 3(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = (x_1 - x_2) \\ & \Rightarrow & (x_1^2 + x_1x_2 + x_2^2) = \frac{1}{3} \end{array}$$

Exercises II Exercise V

Again, this is impossible since x_1, x_2 are integers, thus f is one-to-one.

However, the function is not onto. Consider this counter example: f(a)=1 for some integer a. If this were true, then it must be the case that

 $a(3a^2 - 1) = 1$

Where a and $(3a^2-1)$ are integers. But the only time we can ever get that the product of two integers is 1 is when we have -1(-1) or 1(1) neither of which satisfy the equality.

Inverse Functions I

Definition

Let $f: A \to B$ be a bijection. The *inverse function* of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} . Thus $f^{-1}(b) = a$ when f(a) = b.

More succinctly, if an inverse exists,

$$f(a) = b \iff f^{-1}(b) = a$$

Inverse Functions II

Note that by the definition, a function can have an inverse if and only if it is a bijection. Thus, we say that a bijection is *invertible*.

Why must a function be bijective to have an inverse?

- ▶ Consider the case where f is not one-to-one. This means that some element $b \in B$ is mapped to by more than one element in A; say a_1 and a_2 . How can we define an inverse? Does $f^{-1}(b) = a_1$ or a_2 ?
- ▶ Consider the case where f is not onto. This means that there is some element $b \in B$ that is not mapped to by any $a \in A$, therefore what is $f^{-1}(b)$?

Examples Example I

Example

Let $f:\mathbb{R} \to \mathbb{R}$ be defined by

f(x) = 2x - 3

What is f^{-1} ?

First, verify that f is a bijection (it is). To find an inverse, we use substitution:

▶ Let $f^{-1}(y) = x$

- Let y = 2x 3 and solve for x
- ▶ Clearly, $x = \frac{y+3}{2}$ so,
- ► $f^{-1}(y) = \frac{y+3}{2}$.

Examples

Example II

Example

Let

 $f(x) = x^2$

What is f^{-1} ?

No domain/codomain has been specified. Say $f:\mathbb{R}\to\mathbb{R}$ Is f a bijection? Does an inverse exist?

No, however if we specify that

$$A = \{x \in \mathbb{R} \mid x \leq 0\}$$

and

$$B = \{ y \in \mathbb{R} \mid y \ge 0 \}$$

then it becomes a bijection and thus has an inverse.

Examples Example II Continued

To find the inverse, we again, let $f^{-1}(y)=x$ and $y=x^2.$ Solving for x we get $x=\pm\sqrt{y}.$ But which is it?

Since $\mathrm{dom}(f)$ is all nonpositive and $\mathrm{rng}(f)$ is nonnegative, y must be positive, thus

 $f^{-1}(y) = -\sqrt{y}$

Thus, it should be clear that domains/codomains are just as important to a function as the definition of the function itself.

Examples

Example III

Example

Let

 $f(x) = 2^x$

What should the domain/codomain be for this to be a bijection? What is the inverse?

The function should be $f:\mathbb{R}\to\mathbb{R}^+.$ What happens when we include 0? Restrict either one to $\mathbb{Z}?$

Let $f^{-1}(y) = x$ and $y = 2^x$, solving for x we get $x = \log_2(x)$.

Therefore,

 $f^{-1}(y) = \log_2\left(y\right)$

Notes			

Composition I

The values of functions can be used as the input to other functions.

Definition

Let $g:A\to B$ and let $f:B\to C.$ The composition of the functions f and g is

 $(f\circ g)(x)=f(g(x))$

Composition II

Note the *order* that you apply a function matters—you go from inner most to outer most.

The composition $f\circ g$ cannot be defined unless the the range of g is a subset of the domain of f;

 $f \circ g$ is defined $\iff \operatorname{rng}(g) \subseteq \operatorname{dom}(f)$

It also follows that $f\circ g$ is not necessarily the same as $g\circ f.$

Composition

Example I

Example

Let f and g be functions, $\mathbb{R} \to \mathbb{R}$ defined by

$$\begin{array}{rcl} f(x) &=& 2x-3\\ g(x) &=& x^2+1 \end{array}$$

What are $f \circ g$ and $g \circ f$?

Note that f is bijective, thus $\operatorname{dom}(f) = \operatorname{rng}(f) = \mathbb{R}$. For g, we have that $\operatorname{dom}(g) = \mathbb{R}$ but that $\operatorname{rng}(g) = \{x \in \mathbb{R} \mid x \geq 1\}$.

Composition Example I

Even so, $rng(g) \subseteq dom(f)$ and so $f \circ g$ is defined. Also, $rng(f) \subseteq dom(g)$ so $g \circ f$ is defined as well.

 $\begin{array}{rcl} (f \circ g)(x) &=& g(f(x)) \\ &=& g(2x-3) \\ &=& (2x-3)^2+1 \\ &=& 4x^2-12x+10 \end{array}$

and

$$(g \circ f)(x) = f(g(x))$$

= $f(x^2 + 1)$
= $2(x^2 + 1) -$
= $2x^2 - 1$

3

Equality

Though intuitive, we formally state what it means for two functions to be equal.

Lemma

Two functions f and g are equal if and only if $\mathrm{dom}(f)=\mathrm{dom}(g)$ and $\forall a\in\mathrm{dom}(f)(f(a)=g(a))$

Associativity

Though the composition of functions is not commutative $(f \circ g \neq g \circ f)$, it is associative.

Lemma

Composition of functions is an associative operation; that is,

 $(f\circ g)\circ h=f\circ (g\circ h)$

Important Functions

Identity Function Definition

The *identity function* on a set A is the function

 $\iota: A \to A$

defined by $\iota(a)=a$ for all $a\in A.$ This symbol is the Greek letter iota.

One can view the identity function as a composition of a function and its inverse;

 $\iota(a) = (f \circ f^{-1})(a)$

Moreover, the composition of any function f with the identity function is itself $f; % \begin{subarray}{c} \end{subarray} \end{subarray}$

 $(f \circ \iota)(a) = (\iota \circ f)(a) = f(a)$

Inverses & Identity

The identity function, along with the composition operation gives us another characterization for when a function has an inverse.

Theorem

Functions $f:A \to B$ and $g:B \to A$ are inverses if and only if

 $g \circ f = \iota_A$ and $f \circ g = \iota_B$

That is,

$$\forall a \in A, b \in B\big((g(f(a))) = a \land f(g(b)) = b\big)$$

Notes			

Important Functions I Absolute Value Function

Definition

The absolute value function, denoted |x| is a function $f:\mathbb{R}\to\{y\in\mathbb{R}\mid y\geq 0\}.$ Its value is defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Floor & Ceiling Functions

Definition

The floor function, denoted $\lfloor x \rfloor$ is a function $\mathbb{R} \to \mathbb{Z}.$ Its value is the largest integer that is less than or equal to x.

The *ceiling function*, denoted $\lceil x \rceil$ is a function $\mathbb{R} \to \mathbb{Z}$. Its value is the smallest integer that is greater than or equal to x.

Factorial Function

The factorial function gives us the number of permutations (that is, uniquely ordered arrangement) of a collection of n objects.

Definition

The *factorial function*, denoted n! is a function $\mathbb{N} \to \mathbb{Z}^+$. Its value is the product of the first n positive integers.

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Factorial Function Stirling's Approximation

The factorial function is defined on a discrete domain. In many applications, it is useful to consider a continuous version of the function (say if we want to differentiate it).

To this end, we have Stirling's Formula:

 $n! \approx \sqrt{2\pi n} \frac{n^n}{e^n}$

Not	es	

