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Notes

Combinatorics I
Introduction

Combinatorics is the study of collections of objects. Specifically,
counting objects, arrangement, derangement, etc. of objects along
with their mathematical properties.

Counting objects is important in order to analyze algorithms and
compute discrete probabilities.

Originally, combinatorics was motivated by gambling: counting
configurations is essential to elementary probability.

Notes

Combinatorics II
Introduction

A simple example: How many arrangements are there of a deck of
52 cards?

In addition, combinatorics can be used as a proof technique.

A combinatorial proof is a proof method that uses counting
arguments to prove a statement.

Notes



Product Rule

If two events are not mutually exclusive (that is, we do them
separately), then we apply the product rule.

Theorem (Product Rule)

Suppose a procedure can be accomplished with two disjoint
subtasks. If there are n1 ways of doing the first task and n2 ways
of doing the second, then there are

n1 · n2

ways of doing the overall procedure.

Notes

Sum Rule I

If two events are mutually exclusive, that is, they cannot be done
at the same time, then we must apply the sum rule.

Theorem (Sum Rule)

If an event e1 can be done in n1 ways and an event e2 can be done
in n2 ways and e1 and e2 are mutually exclusive, then the number
of ways of both events occurring is

n1 + n2

Notes

Sum Rule II

There is a natural generalization to any sequence of m tasks;
namely the number of ways m mutually exclusive events can occur
is

n1 + n2 + · · ·nm−1 + nm

We can give another formulation in terms of sets. Let
A1, A2, . . . , Am be pairwise disjoint sets. Then

|A1 ∪A2 ∪ · · · ∪Am| = |A1|+ |A2|+ · · ·+ |Am|

In fact, this is a special case of the general Principle of
Inclusion-Exclusion.

Notes



Principle of Inclusion-Exclusion (PIE) I
Introduction

Say there are two events, e1 and e2 for which there are n1 and n2

possible outcomes respectively.

Now, say that only one event can occur, not both.

In this situation, we cannot apply the sum rule? Why?

Notes

Principle of Inclusion-Exclusion (PIE) II
Introduction

We cannot use the sum rule because we would be over counting
the number of possible outcomes.

Instead, we have to count the number of possible outcomes of e1

and e2 minus the number of possible outcomes in common to
both; i.e. the number of ways to do both “tasks”.

If again we think of them as sets, we have

|A1|+ |A2| − |A1 ∩A2|

Notes

Principle of Inclusion-Exclusion (PIE) III
Introduction

More generally, we have the following.

Lemma

Let A,B be subsets of a finite set U . Then

1. |A ∪B| = |A|+ |B| − |A ∩B|
2. |A ∩B| ≤ min{|A|, |B|}
3. |A \B| = |A| − |A ∩B| ≥ |A| − |B|
4. |A| = |U | − |A|
5. |A⊕B| = |A∪B|−|A∩B| = A+B−2|A∩B| = |A\B|+|B\A|
6. |A×B| = |A| × |B|

Notes



Principle of Inclusion-Exclusion (PIE) I
Theorem

Theorem

Let A1, A2, . . . , An be finite sets, then

|A1 ∪A2 ∪ · · · ∪An| =
∑

i

|Ai|

−
∑
i<j

|Ai ∩Aj |

+
∑

i<j<k

|Ai ∩Aj ∩Ak|

− · · ·
+(−1)n+1|A1 ∩A2 ∩ · · · ∩An|

Notes

Principle of Inclusion-Exclusion (PIE) II
Theorem

Each summation is over all i, pairs i, j with i < j, triples i, j, k
with i < j < k etc.

Notes

Principle of Inclusion-Exclusion (PIE) III
Theorem

To illustrate, when n = 3, we have

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3|
−

[
|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|

]
+|A1 ∩A2 ∩A3|

Notes



Principle of Inclusion-Exclusion (PIE) IV
Theorem

To illustrate, when n = 4, we have

|A1 ∪A2 ∪A3 ∪A4| = |A1|+ |A2|+ |A3|+ |A4|

−
[
|A1 ∩A2|+ |A1 ∩A3|+ +|A1 ∩A4|

|A2 ∩A3|+ |A2 ∩A4|+ |A3 ∩A4|
]

+
[
|A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+

|A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|
]

−|A1 ∩A2 ∩A3 ∩A4|

Notes

Principle of Inclusion-Exclusion (PIE) I
Example I

Example

How many integers between 1 and 300 (inclusive) are

1. Divisible by at least one of 3, 5, 7?

2. Divisible by 3 and by 5 but not by 7?

3. Divisible by 5 but by neither 3 nor 7?

Let
A = {n | 1 ≤ n ≤ 300 ∧ 3 | n}
B = {n | 1 ≤ n ≤ 300 ∧ 5 | n}
C = {n | 1 ≤ n ≤ 300 ∧ 7 | n}

Notes

Principle of Inclusion-Exclusion (PIE) II
Example I

How big are each of these sets? We can easily use the floor
function;

|A| = b300/3c = 100
|B| = b300/5c = 60
|C| = b300/7c = 42

For (1) above, we are asked to find |A ∪B ∪ C|.

Notes



Principle of Inclusion-Exclusion (PIE) III
Example I

By the principle of inclusion-exclusion, we have that

|A ∪B ∪ C| = |A|+ |B|+ |C|

−
[
|A ∩B|+ |A ∩ C|+ |B ∩ C|

]
+|A ∩B ∩ C|

It remains to find the final 4 cardinalities.

All three divisors, 3, 5, 7 are relatively prime. Thus, any integer
that is divisible by both 3 and 5 must simply be divisible by 15.

Notes

Principle of Inclusion-Exclusion (PIE) IV
Example I

Using the same reasoning for all pairs (and the triple) we have

|A ∩B| = b300/15c = 20
|A ∩ C| = b300/21c = 14
|B ∩ C| = b300/35c = 8

|A ∩B ∩ C| = b300/105c = 2

Therefore,

|A ∪B ∪ C| = 100 + 60 + 42− 20− 14− 8 + 2 = 162

Notes

Principle of Inclusion-Exclusion (PIE) V
Example I

For (2) above, it is enough to find

|(A ∩B) \ C|

By the definition of set-minus,

|(A ∩B) \ C| = |A ∩B| − |A ∩B ∩ C| = 20− 2 = 18

Notes



Principle of Inclusion-Exclusion (PIE) VI
Example I

For (3) above, we are asked to find

|B \ (A ∪ C)| = |B| − |B ∩ (A ∪ C)|

By distributing B over the intersection, we get

|B ∩ (A ∪ C)| = |(B ∩A) ∪ (B ∩ C)|
= |B ∩A|+ |B ∩ C| − |(B ∩A) ∩ (B ∩ C)|
= |B ∩A|+ |B ∩ C| − |B ∩A ∩ C|
= 20 + 8− 2 = 26

So the answer is |B| − 26 = 60− 26 = 34.

Notes

Principle of Inclusion-Exclusion (PIE) I
Example II

The principle of inclusion-exclusion can be used to count the
number of onto functions.

Theorem

Let A,B be non-empty sets of cardinality m,n with m ≥ n. Then
there are

nm −
(

n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m − · · ·+ (−1)n−1

(
n

n− 1

)
1m

i.e.
∑n−1

i=0 (−1)i
(
n
i

)
(n− i)m onto functions f : A→ B.

See textbook page 460.

Notes

Principle of Inclusion-Exclusion (PIE) II
Example II

Example

How many ways of giving out 6 pieces of candy to 3 children if
each child must receive at least one piece?

This can be modeled by letting A represent the set of candies and
B be the set of children.

Then a function f : A→ B can be interpreted as giving candy ai

to child cj .

Since each child must receive at least one candy, we are
considering only onto functions.

Notes



Principle of Inclusion-Exclusion (PIE) III
Example II

To count how many there are, we apply the theorem and get (for
m = 6, n = 3),

36 −
(

3
1

)
(3− 1)6 +

(
3
2

)
(3− 2)6 = 540

Notes

Derangements I

Consider the hatcheck problem.

I An employee checks hats from n customers.

I However, he forgets to tag them.

I When customer’s check-out their hats, they are given one at
random.

What is the probability that no one will get their hat back?

Notes

Derangements II

This can be modeled using derangements: permutations of objects
such that no element is in its original position.

For example, 21453 is a derangement of 12345, but 21543 is not.

Theorem

The number of derangements of a set with n elements is

Dn = n!
[
1− 1

1!
+

1
2!
− 1

3!
+ · · · (−1)n 1

n!

]

See textbook page 461.

Notes



Derangements III

Thus, the answer to the hatcheck problem is

Dn

n!

Its interesting to note that

e−1 = 1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n 1

n!
· · ·

So that the probability of the hatcheck problem converges;

lim
n→∞

Dn

n!
= e−1 = .368 . . .

Notes

The Pigeonhole Principle I

The pigeonhole principle states that if there are more pigeons than
there are roosts (pigeonholes), for at least one pigeonhole, more
than two pigeons must be in it.

Theorem (Pigeonhole Principle)

If k + 1 or more objects are placed into k boxes, then there is at
least one box containing two ore more objects.

This is a fundamental tool of elementary discrete mathematics. It
is also known as the Dirichlet Drawer Principle.

Notes

The Pigeonhole Principle II

It is seemingly simple, but very powerful.

The difficulty comes in where and how to apply it.

Some simple applications in computer science:

I Calculating the probability of Hash functions having a
collision.

I Proving that there can be no lossless compression algorithm
compressing all files to within a certain ratio.

Lemma

For two finite sets A,B there exists a bijection f : A→ B if and
only if |A| = |B|.

Notes



Generalized Pigeonhole Principle I

Theorem

If N objects are placed into k boxes then there is at least one box
containing at least ⌈

N

k

⌉

Example

In any group of 367 or more people, at least two of them must
have been born on the same date.

Notes

Generalized Pigeonhole Principle II

A probabilistic generalization states that if n objects are randomly
put into m boxes with uniform probability (each object is placed in
a given box with probability 1/m) then at least one box will hold
more than one object with probability,

1− m!
(m− n)!mn

Notes

Generalized Pigeonhole Principle III

Example

Among 10 people, what is the probability that two or more will
have the same birthday?

Here, n = 10 and m = 365 (ignore leapyears). Thus, the
probability that two will have the same birthday is

1− 365!
(365− 10)!36510

≈ .1169

So less than a 12% probability!

Notes



Pigeonhole Principle I
Example I

Example

Show that in a room of n people with certain acquaintances, some
pair must have the same number of acquaintances.

Note that this is equivalent to showing that any symmetric,
irreflexive relation on n elements must have two elements with the
same number of relations.

We’ll show by contradiction using the pigeonhole principle.

Assume to the contrary that every person has a different number
of acquaintances; 0, 1, . . . , n− 1 (we cannot have n here because
it is irreflexive). Are we done?

Notes

Pigeonhole Principle II
Example I

No, since we only have n people, this is okay (i.e. there are n
possibilities).

We need to use the fact that acquaintanceship is a symmetric,
irreflexive relation.

In particular, some person knows 0 people while another knows
n− 1 people.

In other words, someone knows everyone, but there is also a person
that knows no one.

Thus, we have reached a contradiction.

Notes

Pigeonhole Principle I
Example II

Example

Show that in any list of ten nonnegative integers, A0, . . . , A9,
there is a string of consecutive items of the list al, al+1, . . . whose
sum is divisible by 10.

Consider the following 10 numbers.

a0

a0 + a1

a0 + a1 + a2
...
a0 + a1 + a2 + . . . + a9

If any one of them is divisible by 10 then we are done.

Notes



Pigeonhole Principle II
Example II

Otherwise, we observe that each of these numbers must be in one
of the congruence classes

1 mod 10, 2 mod 10, . . . , 9 mod 10

By the pigeonhole principle, at least two of the integers above
must lie in the same congruence class. Say a, a′ lie in the
congruence class k mod 10.

Then

(a− a′) ≡ k − k(mod 10)

and so the difference (a− a′) is divisible by 10.

Notes

Pigeonhole Principle I
Example III

Example

Say 30 buses are to transport 2000 Cornhusker fans to Colorado.
Each bus has 80 seats. Show that

1. One of the buses will have 14 empty seats.

2. One of the buses will carry at least 67 passengers.

For (1), the total number of seats is 30 · 80 = 2400 seats. Thus
there will be 2400− 2000 = 400 empty seats total.

Notes

Pigeonhole Principle II
Example III

By the generalized pigeonhole principle, with 400 empty seats
among 30 buses, one bus will have at least⌈

400
30

⌉
= 14

empty seats.

For (2) above, by the pigeonhole principle, seating 2000 passengers
among 30 buses, one will have at least⌈

2000
30

⌉
= 67

passengers.

Notes



Permutations I

A permutation of a set of distinct objects is an ordered
arrangement of these objects. An ordered arrangement of r
elements of a set is called an r-permutation.

Theorem

The number of r permutations of a set with n distinct elements is

P (n, r) =
r−1∏
i=0

(n− i) = n(n− 1)(n− 2) · · · (n− r + 1)

Notes

Permutations II

It follows that

P (n, r) =
n!

(n− r)!

In particular,

P (n, n) = n!

Again, note here that order is important. It is necessary to
distinguish in what cases order is important and in which it is not.

Notes

Permutations
Example I

Example

How many pairs of dance partners can be selected from a group of
12 women and 20 men?

The first woman can be partnered with any of the 20 men. The
second with any of the remaining 19, etc.

To partner all 12 women, we have

P (20, 12)

Notes



Permutations
Example II

Example

In how many ways can the English letters be arranged so that
there are exactly ten letters between a and z?

The number of ways of arranging 10 letters between a and z is
P (24, 10). Since we can choose either a or z to come first, there
are 2P (24, 10) arrangements of this 12-letter block.

For the remaining 14 letters, there are P (15, 15) = 15!
arrangements. In all, there are

2P (24, 10) · 15!

Notes

Permutations
Example III

Example

How many permutations of the letters a, b, c, d, e, f, g contain
neither the pattern bge nor eaf?

The number of total permutations is P (7, 7) = 7!.

If we fix the pattern bge, then we can consider it as a single block.
Thus, the number of permutations with this pattern is
P (5, 5) = 5!.

Notes

Permutations
Example III - Continued

Fixing the pattern eaf we have the same number, 5!.

Thus we have
7!− 2(5!)

Is this correct?

No. We have taken away too many permutations: ones containing
both eaf and bge.

Here there are two cases, when eaf comes first and when bge
comes first.

Notes



Permutations
Example III - Continued

eaf cannot come before bge, so this is not a problem.

If bge comes first, it must be the case that we have bgeaf as a
single block and so we have 3 blocks or 3! arrangements.

Altogether we have

7!− 2(5!) + 3! = 4806

Notes

Combinations I
Definition

Whereas permutations consider order, combinations are used when
order does not matter.

Definition

An k-combination of elements of a set is an unordered selection of
k elements from the set. A combination is simply a subset of
cardinality k.

Notes

Combinations II
Definition

Theorem

The number of k-combinations of a set with cardinality n with
0 ≤ k ≤ n is

C(n, k) =
(

n

k

)
=

n!
(n− k)!k!

Note: the notation,
(
n
k

)
is read, “n choose k”. In TEX use {n

choose k} (with the forward slash).

Notes



Combinations III
Definition

A useful fact about combinations is that they are symmetric.(
n

1

)
=

(
n

n− 1

)
(

n

2

)
=

(
n

n− 2

)
etc.

Notes

Combinations IV
Definition

This is formalized in the following corollary.

Corollary

Let n, k be nonnegative integers with k ≤ n, then(
n

k

)
=

(
n

n− k

)

Notes

Combinations I
Example I

Example

In the Powerball lottery, you pick five numbers between 1 and 55
and a single “powerball” number between 1 and 42. How many
possible plays are there?

Order here doesn’t matter, so the number of ways of choosing five
regular numbers is (

55
5

)

Notes



Combinations II
Example I

We can choose among 42 power ball numbers. These events are
not mutually exclusive, thus we use the product rule.

42
(

55
5

)
= 42

55!
(55− 5)!5!

= 146, 107, 962

So the odds of winning are

1
146, 107, 962

< .000000006845

Notes

Combinations I
Example II

Example

In a sequence of 10 coin tosses, how many ways can 3 heads and 7
tails come up?

The number of ways of choosing 3 heads out of 10 coin tosses is(
10
3

)

Notes

Combinations II
Example II

However, this is the same as choosing 7 tails out of 10 coin tosses;(
10
3

)
=

(
10
7

)
= 120

This is a perfect illustration of the previous corollary.

Notes



Combinations I
Example III

Example

How many possible committees of five people can be chosen from
20 men and 12 women if

1. if exactly three men must be on each committee?

2. if at least four women must be on each committee?

Notes

Combinations II
Example III

For (1), we must choose 3 men from 20 then two women from 12.
These are not mutually exclusive, thus the product rule applies.(

20
3

)(
12
2

)

Notes

Combinations III
Example III

For (2), we consider two cases; the case where four women are
chosen and the case where five women are chosen. These two
cases are mutually exclusive so we use the addition rule.

For the first case we have (
20
1

)(
12
4

)

Notes



Combinations IV
Example III

And for the second we have(
20
0

)(
12
5

)

Together we have(
20
1

)(
12
4

)
+

(
20
0

)(
12
5

)
= 10, 692

Notes

Binomial Coefficients I
Introduction

The number of r-combinations,
(
n
r

)
is also called a binomial

coefficient.

They are the coefficients in the expansion of the expression
(multivariate polynomial), (x + y)n. A binomial is a sum of two
terms.

Notes


