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Introduction I

Recall that we are really only interested in the Order of Growth
of an algorithm’s complexity.

How well does the algorithm perform as the input size grows;

n→∞

We have seen how to mathematically evaluate the cost
functions of algorithms with respect to their input size n and
their elementary operation.

However, it suffices to simply measure a cost function’s
asymptotic behavior.
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Introduction I

In practice, specific hardware, implementation, languages, etc.
will greatly affect how the algorithm behaves. However, we
want to study and analyze algorithms in and of themselves,
independent of such factors.

For example, an algorithm that executes its elementary
operation 10n times is better than one which executes it
.005n2 times. Moreover, algorithms that have running times n2

and 2000n2 are considered to be asymptotically equivalent.
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Big-O Definition

Definition

Let f and g be two functions f, g : N→ R+. We say that

f(n) ∈ O(g(n))

(read: f is Big-“O” of g) if there exists a constant c ∈ R+ and
n0 ∈ N such that for every integer n ≥ n0,

f(n) ≤ cg(n)

Big-O is actually Omicron, but it suffices to write “O”

Intuition: f is (asymptotically) less than or equal to g

Big-O gives an asymptotic upper bound
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Big-Omega Definition

Definition

Let f and g be two functions f, g : N→ R+. We say that

f(n) ∈ Ω(g(n))

(read: f is Big-Omega of g) if there exist c ∈ R+ and n0 ∈ N
such that for every integer n ≥ n0,

f(n) ≥ cg(n)

Intuition: f is (asymptotically) greater than or equal to g.

Big-Omega gives an asymptotic lower bound.
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Big-Theta Definition

Definition

Let f and g be two functions f, g : N→ R+. We say that

f(n) ∈ Θ(g(n))

(read: f is Big-Theta of g) if there exist constants c1, c2 ∈ R+

and n0 ∈ N such that for every integer n ≥ n0,

c1g(n) ≤ f(n) ≤ c2g(n)

Intuition: f is (asymptotically) equal to g.

f is bounded above and below by g.

Big-Theta gives an asymptotic equivalence.
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Asymptotic Properties I

Theorem

For f1(n) ∈ O(g1(n)) and f2 ∈ O(g2(n)),

f1(n) + f2(n) ∈ O(max{g1(n), g2(n)})

This property implies that we can ignore lower order terms. In
particular, for any polynomial p(n) with degree k,
p(n) ∈ O(nk).1

In addition, this gives us justification for ignoring constant
coefficients. That is, for any function f(n) and positive
constant c,

cf(n) ∈ Θ(f(n))
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Asymptotic Properties II

Some obvious properties also follow from the definition.

Corollary

For positive functions, f(n) and g(n) the following hold:

f(n) ∈ Θ(g(n)) ⇐⇒ f(n) ∈ O(g(n)) and f(n) ∈
Ω(g(n))
f(n) ∈ O(g(n)) ⇐⇒ g(n) ∈ Ω(f(n))

The proof is left as an exercise.

1More accurately, p(n) ∈ Θ(nk)9 / 1



Asymptotics

CSE235

Asymptotic Proof Techniques
Definitional Proof

Proving an asymptotic relationship between two given functions
f(n) and g(n) can be done intuitively for most of the functions
you will encounter; all polynomials for example. However, this
does not suffice as a formal proof.

To prove a relationship of the form f(n) ∈ ∆(g(n)) where ∆ is
one of O,Ω, or Θ, can be done simply using the definitions,
that is:

find a value for c (or c1 and c2).

find a value for n0.

(But this is not the only way.)
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Asymptotic Proof Techniques
Definitional Proof - Example I

Example

Let f(n) = 21n2 + n and g(n) = n3. Our intuition should tell
us that f(n) ∈ O(g(n)). Simply using the definition confirms
this:

21n2 + n ≤ cn3

holds for, say c = 3 and for all n ≥ n0 = 8 (in fact, an infinite
number of pairs can satisfy this equation).
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Asymptotic Proof Techniques
Definitional Proof - Example II

Example

Let f(n) = n2 + n and g(n) = n3. Find a tight bound of the
form f(n) ∈ ∆(g(n)).

Our intuition tells us that

f(n) ∈ O(n3)
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Asymptotic Proof Techniques
Definitional Proof - Example II

Proof.

If n ≥ 1 it is clear that n ≤ n3 and n2 ≤ n3.

Therefore, we have that

n2 + n ≤ n3 + n3 = 2n3

Thus, for n0 = 1 and c = 2, by the definition of Big-O, we
have that f(n) ∈ O(g(n)).
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Asymptotic Proof Techniques
Definitional Proof - Example II

Proof.

If n ≥ 1 it is clear that n ≤ n3 and n2 ≤ n3.

Therefore, we have that

n2 + n ≤ n3 + n3 = 2n3

Thus, for n0 = 1 and c = 2, by the definition of Big-O, we
have that f(n) ∈ O(g(n)).
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Asymptotic Proof Techniques
Definitional Proof - Example II

Proof.

If n ≥ 1 it is clear that n ≤ n3 and n2 ≤ n3.

Therefore, we have that

n2 + n ≤ n3 + n3 = 2n3

Thus, for n0 = 1 and c = 2, by the definition of Big-O, we
have that f(n) ∈ O(g(n)).
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Asymptotic Proof Techniques
Definitional Proof - Example II

Proof.

If n ≥ 1 it is clear that n ≤ n3 and n2 ≤ n3.

Therefore, we have that

n2 + n ≤ n3 + n3 = 2n3

Thus, for n0 = 1 and c = 2, by the definition of Big-O, we
have that f(n) ∈ O(g(n)).
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Asymptotic Proof Techniques
Definitional Proof - Example III

Example

Let f(n) = n3 + 4n2 and g(n) = n2. Find a tight bound of the
form f(n) ∈ ∆(g(n)).

Here, our intuition should tell us that

f(n) ∈ Ω(g(n))
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Asymptotic Proof Techniques
Definitional Proof - Example III

Proof.

If n ≥ 0 then
n3 ≤ n3 + 4n2

As before, if n ≥ 1,
n2 ≤ n3

Thus, when n ≥ 1,

n2 ≤ n3 ≤ n3 + 3n2

Thus by the definition of Big-Ω, for n0 = 1, c = 1, we
have that f(n) ∈ Ω(g(n)).
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Asymptotic Proof Techniques
Definitional Proof - Example III

Proof.

If n ≥ 0 then
n3 ≤ n3 + 4n2

As before, if n ≥ 1,
n2 ≤ n3

Thus, when n ≥ 1,

n2 ≤ n3 ≤ n3 + 3n2

Thus by the definition of Big-Ω, for n0 = 1, c = 1, we
have that f(n) ∈ Ω(g(n)).
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Asymptotic Proof Techniques
Definitional Proof - Example III

Proof.

If n ≥ 0 then
n3 ≤ n3 + 4n2

As before, if n ≥ 1,
n2 ≤ n3

Thus, when n ≥ 1,

n2 ≤ n3 ≤ n3 + 3n2

Thus by the definition of Big-Ω, for n0 = 1, c = 1, we
have that f(n) ∈ Ω(g(n)).

20 / 1



Asymptotics

CSE235

Asymptotic Proof Techniques
Definitional Proof - Example III

Proof.

If n ≥ 0 then
n3 ≤ n3 + 4n2

As before, if n ≥ 1,
n2 ≤ n3

Thus, when n ≥ 1,
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Thus by the definition of Big-Ω, for n0 = 1, c = 1, we
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Asymptotic Proof Techniques
Definitional Proof - Example III

Proof.

If n ≥ 0 then
n3 ≤ n3 + 4n2

As before, if n ≥ 1,
n2 ≤ n3

Thus, when n ≥ 1,

n2 ≤ n3 ≤ n3 + 3n2

Thus by the definition of Big-Ω, for n0 = 1, c = 1, we
have that f(n) ∈ Ω(g(n)).
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Asymptotic Proof Techniques
Trick for polynomial of degree 2

If you have a polynomial of degree 2 such as an2 + bn + c, you
can prove it is Θ(n2) using the following values:

c1 = a
4

c2 = 7a
4

n0 = 2 ·max( |b|a ,

√
|c|
a )
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Limit Method

Now try this one:

f(n) = n50 + 12n3 log4 n− 1243n12+
245n6 log n + 12 log3 n− log n

g(n) = 12n50 + 24 log14 n43− log n
n5 + 12

Using the formal definitions can be very tedious especially when
one has very complex functions. It is much better to use the
Limit Method which uses concepts from calculus.
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Limit Method Process

Say we have functions f(n) and g(n). We set up a limit
quotient between f and g as follows:

lim
n→∞

f(n)
g(n)

=


0 then f(n) ∈ O(g(n))
c > 0 then f(n) ∈ Θ(g(n))
∞ then f(n) ∈ Ω(g(n))

Justifications for the above can be proven using calculus,
but for our purposes the limit method will be sufficient for
showing asymptotic inclusions.

Always try to look for algebraic simplifications first.

If f and g both diverge or converge on zero or infinity,
then you need to apply l’Hôpital’s Rule.
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l’Hôpital’s Rule

Theorem

(l’Hôpital’s Rule) Let f and g, if the limit between the quotient
f(n)
g(n) exists, it is equal to the limit of the derivative of the
denominator and the numerator.

lim
n→∞

f(n)
g(n)

= lim
n→∞

f ′(n)
g′(n)
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l’Hôpital’s Rule I
Justification

Why do we have to use l’Hôpital’s Rule? Consider the following
function:

f(x) =
sinx

x

Clearly, sin 0 = 0 so you may say that f(x) = 0. However, the
denominator is also zero so you may say f(x) =∞, but both
are wrong.
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l’Hôpital’s Rule II
Justification

Observe the graph of f(x):

Figure: f(x) = sin x
x
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l’Hôpital’s Rule III
Justification

Clearly, though f(x) is undefined at x = 0, the limit still exists.

Applying l’Hôpital’s Rule gives us the correct answer:

lim
x→0

sinx′

x′
=

cos x

1
= 1
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Limit Method
Example 1

Example

Let f(n) = 2n, g(n) = 3n. Determine a tight inclusion of the
form f(n) ∈ ∆(g(n)).

What’s our intuition in this case?
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Limit Method
Example 1 - Proof A

Proof.

We prove using limits.

We set up our limit,

lim
n→∞

f(n)
g(n)

=
2n

3n

Using l’Hôpital’s Rule will get you no where:

2n′

3n′ =
(ln 2)2n

(ln 3)3n

Both numerator and denominator still diverge. We’ll have
to use an algebraic simplification.
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Limit Method
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Limit Method
Example 1 - Proof A
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Limit Method
Example 1 - Proof B

Continued.

Using algebra,

lim
n→∞

2n

3n
=

(
2
3

)n

Now we use the following Theorem without proof:

lim
n→∞

α =


0 if α < 1
1 if α = 1
∞ if α > 1

Therefore we conclude that the quotient converges to zero
thus,

2n ∈ O(3n)
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Limit Method
Example 1 - Proof B

Continued.

Using algebra,

lim
n→∞

2n

3n
=

(
2
3

)n

Now we use the following Theorem without proof:

lim
n→∞

α =


0 if α < 1
1 if α = 1
∞ if α > 1

Therefore we conclude that the quotient converges to zero
thus,

2n ∈ O(3n)
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Limit Method
Example 2

Example

Let f(n) = log2 n, g(n) = log3 n2. Determine a tight inclusion
of the form f(n) ∈ ∆(g(n)).

What’s our intuition in this case?
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Limit Method
Example 2 - Proof A

Proof.

We prove using limits.

We set up our limit,

lim
n→∞

f(n)
g(n)

=
log2 n

log3 n2

Here, we have to use the change of base formula for
logarithms:

logα n =
logβ n

logβ α
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Limit Method
Example 2 - Proof A

Proof.

We prove using limits.

We set up our limit,
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Limit Method
Example 2 - Proof A

Proof.

We prove using limits.

We set up our limit,

lim
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log3 n2
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logα n =
logβ n
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Limit Method
Example 2 - Proof B

Continued.

And we get that

lim
n→∞

f(n)
g(n)

=
log2 (n)
log3 (n2)

=
log2 n
2 log2 n
log2 3

=
log2 3

2
≈ .7924 . . .

So we conclude that f(n) ∈ Θ(g(n)).
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Limit Method
Example 2 - Proof B
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Limit Method
Example 2 - Proof B

Continued.

And we get that
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Limit Method
Example 2 - Proof B
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Limit Method
Example 2 - Proof B
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≈ .7924 . . .
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Limit Properties

A useful property of limits is that the composition of functions
is preserved.

Lemma

For the composition ◦ of addition, subtraction, multiplication
and division, if the limits exist (that is, they converge), then

lim
n→∞

f1(n) ◦ lim
n→∞

f2(n) = lim
n→∞

f1(n) ◦ f2(n)
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Useful Identities & Derivatives

Some useful derivatives that you should memorize include

(nk)′ = knk−1

(logb (n))′ = 1
n ln (b)

(f1(n)f2(n))′ = f ′1(n)f2(n) + f1(n)f ′2(n) (product rule)

(cn)′ = ln (c)cn ← Careful!

Log Identities

Change of Base Formula: logb (n) = logc (n)
logc (b)

log (nk) = k log (n)
log (ab) = log (a) + log (b)
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Efficiency Classes

Constant O(1)
Logarithmic O(log (n))
Linear O(n)
Polylogarithmic O(logk (n))
Quadratic O(n2)
Cubic O(n3)
Polynomial O(nk) for any k > 0
Exponential O(2n)
Super-Exponential O(2f(n)) for f(n) = n(1+ε), ε > 0

For example, n!

Table: Some Efficiency Classes
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Summary

Asymptotics is easy, but remember:

Always look for algebraic simplifications

You must always give a rigorous proof

Using the limit method is always the best

Always show l’Hôpital’s Rule if need be

Give as simple (and tight) expressions as possible
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