Algorithms: A Brief Introduction

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Spring 2006

Computer Science & Engineering 235 Introduction to Discrete Mathematics Section 2.1 of Rosen cse235@cse.unl.edu

Algorithms Formal Definition

Definition

An algorithm is a sequences of unambiguous instructions for solving a problem. Algorithms must be

- Finite must eventually terminate.
- ► Complete *always* gives a solution when there is one.
- ► Correct (sound) *always* gives a "correct" solution.

For an algorithm to be a *feasible* solution to a problem, it must also be effective. That is, it must give a solution in a "reasonable" amount of time.

There can be many algorithms for the same problem.

Pseudo-code

Algorithms are usually presented using some form of *pseudo-code*. Good pseudo-code is a balance between clarity and detail.

Bad pseudo-code gives too many details or is too implementation specific (i.e. actual C++ or Java code or giving every step of a sub-process).

Good pseudo-code abstracts the algorithm, makes good use of mathematical notation and is easy to read.

Algorithms

Brief Introduction

Real World Objects Relations Actions

Computing World Data Structures, ADTs, Classes Relations and functions Operations

Problems are instances of objects and relations between them.

Algorithms¹ are methods or procedures that solve instances of problems

¹"Algorithm" is a distortion of *al-Khwarizmi*, a Persian mathematician

Algorithms

General Techniques

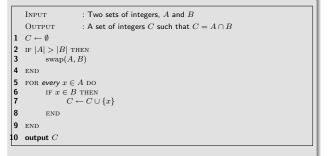
There are many broad categories of Algorithms: Randomized algorithms, Monte-Carlo algorithms, Approximation algorithms, Parallel algorithms, et al.

Usually, algorithms are studied corresponding to relevant data structures. Some general styles of algorithms include

- 1. Brute Force (enumerative techniques, exhaustive search)
- 2. Divide & Conquer
- 3. Transform & Conquer (reformulation)
- 4. Greedy Techniques

Good Pseudo-code Example

INTERSECTION



Latex notation: \leftarrow.

Designing An Algorithm

A general approach to designing algorithms is as follows.

- 1. Understand the problem, assess its difficulty
- 2. Choose an approach (e.g., exact/approximate, deterministic/probabilistic)
- 3. (Choose appropriate data structures)
- 4. Choose a strategy
- 5. Prove termination
- 6. Prove correctness
- 7. Prove completeness
- 8. Evaluate complexity
- 9. Implement and test it.
- 10. Compare to other known approaches and algorithms.

MAX

Pseudo-code

1

2 3

4

5

7

Max INPUT : A set $A = \{a_1, a_2, \ldots, a_n\}$ of integers. OUTPUT : An index i such that $a_i = \max\{a_1, a_2, \ldots, a_n\}$ index $\leftarrow 1$ For $i = 2, \ldots, n$ do IF $a_i > a_{index}$ THEN index $\leftarrow i$ END 6 END output i

Other examples

Check Bubble Sort and Insertion Sort in your textbooks, which you have seen ad nauseum, in CSE155, CSE156, and will see again in CSE310.

I will be glad to discuss them with any of you if you have not seen them yet.

MAX

When designing an algorithm, we usually give a formal statement about the problem we wish to solve.

Problem

Given a set $A = \{a_1, a_2, \ldots, a_n\}$ integers. **Output** the index i of the maximum integer a_i .

A straightforward idea is to simply store an initial maximum, say a_1 then compare it to every other integer, and update the stored maximum if a new maximum is ever found.

MAX

Analysis

This is a simple enough algorithm that you should be able to:

- Prove it correct
- Verify that it has the properties of an algorithm.
- Have some intuition as to its cost.

That is, how many "steps" would it take for this algorithm to complete its run? What constitutes a step? How do we measure the complexity of the step?

These questions will be answered in the next few lectures, for now let us just take a look at a couple more examples.

Greedy algorithm Optimization

In many problems, we wish to not only find a solution, but to find the best or optimal solution.

A simple technique that works for some optimization problems is called the greedy technique.

As the name suggests, we solve a problem by being greedy-that is, choosing the best, most immediate solution (i.e. a local solution).

However, for some problems, this technique is not guaranteed to produce the best *globally optimal* solution.

Example

Change-Making Problem

For anyone who's had to work a service job, this is a familiar problem: we want to give change to a customer, but we want to minimize the number of total coins we give them.

Problem

Given An integer n and a set of coin denominations (c_1,c_2,\ldots,c_r) with $c_1>c_2>\cdots>c_r$

Output A set of coins d_1, d_2, \cdots, d_k such that $\sum_{i=1}^k d_i = n$ and k is minimized.

Change-Making Algorithm

Analysis

Will this algorithm always produce an optimal answer?

Consider a coinage system:

- where $c_1 = 20, c_2 = 15, c_3 = 7, c_4 = 1$
- \blacktriangleright and we want to give 22 "cents" in change.

What will this algorithm produce?

Is it optimal?

It is not optimal since it would give us one c_4 and two c_1 , for three coins, while the optimal is one c_2 and one c_3 for two coins.

Change-Making Algorithm

Proof.

Provin

- ▶ Let $C = \{d_1, d_2, ..., d_k\}$ be the solution given by the greedy algorithm for some integer n. By way of contradiction, assume there is *another* solution $C' = \{d'_1, d'_2, ..., d'_l\}$ with l < k.
- ▶ Consider the case of quarters. Say in C there are q quarters and in C' there are q'. If q' > q we are done.
- Since the greedy algorithm uses as many quarters as possible, n = q(25) + r. where r < 25, thus if q' < q, then in n = q'(25) + r', $r' \ge 25$ and so C' does not provide an optimal solution.
- ▶ Finally, if q = q', then we continue this argument on dimes and nickels. Eventually we reach a contradiction.
- Thus, C = C' is our optimal solution.

Example

Change-Making Algorithm

Change

```
\begin{array}{cccc} \text{INPUT} & : \text{ An integer }n \text{ and a set of coin denominations } (c_1,c_2,\ldots,c_r) \\ & \text{ with } c_1 > c_2 > \cdots > c_r. \\ \text{OUTPUT} & : \text{ A set of coins } d_1, d_2, \cdots, d_k \text{ such that } \sum_{i=1}^k d_i = n \text{ and } k \text{ is } \\ & \text{ minimized.} \end{array}
\begin{array}{c} 1 & C \leftarrow \emptyset \\ 2 & \text{ FOR } i = 1,\ldots,r \text{ DO} \\ 3 & \text{ WHLE } n \geq c_i \text{ DO} \\ 4 & C \leftarrow C \cup \{c_i\} \\ 5 & n \leftarrow n - c_i \\ 6 & \text{ END} \\ 7 & \text{ END} \\ 8 & \text{ output } C \end{array}
```

Change-Making Algorithm Optimal?

What about the US currency system—is the algorithm correct in this case?

Yes, in fact, we can prove it by contradiction.

For simplicity, let $c_1 = 25, c_2 = 10, c_3 = 5, c_4 = 1$.

Change-Making Algorithm Proving optimality

Why (and where) does this proof fail in our previous counter example to the general case?

We need the following lemma:

If n is a positive integer then n cents in change using quarters, dimes, nickels, and pennies using the fewet coins possible

- 1. has at most two dimes, at most one nickel at most most four pennies, and
- 2. cannot have two dimes and a nickel.

The amount of change in dimes, nickels, and pennies cannot exceed 24 cents.