
Algorithms: A Brief Introduction

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Spring 2006

Computer Science & Engineering 235
Introduction to Discrete Mathematics

Section 2.1 of Rosen
cse235@cse.unl.edu

Algorithms
Brief Introduction

Real World Computing World
Objects Data Structures, ADTs, Classes
Relations Relations and functions
Actions Operations

Problems are instances of objects and relations between them.

Algorithms1 are methods or procedures that solve instances of
problems

1”Algorithm” is a distortion of al-Khwarizmi, a Persian mathematician

Algorithms
Formal Definition

Definition

An algorithm is a sequences of unambiguous instructions for
solving a problem. Algorithms must be

I Finite – must eventually terminate.

I Complete – always gives a solution when there is one.

I Correct (sound) – always gives a “correct” solution.

For an algorithm to be a feasible solution to a problem, it must
also be effective. That is, it must give a solution in a “reasonable”
amount of time.

There can be many algorithms for the same problem.

Algorithms
General Techniques

There are many broad categories of Algorithms: Randomized
algorithms, Monte-Carlo algorithms, Approximation algorithms,
Parallel algorithms, et al.

Usually, algorithms are studied corresponding to relevant data
structures. Some general styles of algorithms include

1. Brute Force (enumerative techniques, exhaustive search)

2. Divide & Conquer

3. Transform & Conquer (reformulation)

4. Greedy Techniques

Pseudo-code

Algorithms are usually presented using some form of pseudo-code.
Good pseudo-code is a balance between clarity and detail.

Bad pseudo-code gives too many details or is too implementation
specific (i.e. actual C++ or Java code or giving every step of a
sub-process).

Good pseudo-code abstracts the algorithm, makes good use of
mathematical notation and is easy to read.

Good Pseudo-code
Example

Intersection

Input : Two sets of integers, A and B

Output : A set of integers C such that C = A ∩B

C ← ∅1

if |A| > |B| then2
swap(A, B)3

end4

for every x ∈ A do5
if x ∈ B then6

C ← C ∪ {x}7

end8

end9

output C10

Latex notation: \leftarrow.

Designing An Algorithm

A general approach to designing algorithms is as follows.

1. Understand the problem, assess its difficulty

2. Choose an approach (e.g., exact/approximate,
deterministic/probabilistic)

3. (Choose appropriate data structures)

4. Choose a strategy

5. Prove termination

6. Prove correctness

7. Prove completeness

8. Evaluate complexity

9. Implement and test it.

10. Compare to other known approaches and algorithms.

MAX

When designing an algorithm, we usually give a formal statement
about the problem we wish to solve.

Problem

Given a set A = {a1, a2, . . . , an} integers.
Output the index i of the maximum integer ai.

A straightforward idea is to simply store an initial maximum, say
a1 then compare it to every other integer, and update the stored
maximum if a new maximum is ever found.

MAX
Pseudo-code

Max

Input : A set A = {a1, a2, . . . , an} of integers.

Output : An index i such that ai = max{a1, a2, . . . , an}
index← 11

for i = 2, . . . , n do2
if ai > aindex then3

index← i4

end5

end6

output i7

MAX
Analysis

This is a simple enough algorithm that you should be able to:

I Prove it correct

I Verify that it has the properties of an algorithm.

I Have some intuition as to its cost.

That is, how many “steps” would it take for this algorithm to
complete its run? What constitutes a step? How do we measure
the complexity of the step?

These questions will be answered in the next few lectures, for now
let us just take a look at a couple more examples.

Other examples

Check Bubble Sort and Insertion Sort in your textbooks, which you
have seen ad nauseum, in CSE155, CSE156, and will see again in
CSE310.

I will be glad to discuss them with any of you if you have not seen
them yet.

Greedy algorithm
Optimization

In many problems, we wish to not only find a solution, but to find
the best or optimal solution.

A simple technique that works for some optimization problems is
called the greedy technique.

As the name suggests, we solve a problem by being greedy—that is,
choosing the best, most immediate solution (i.e. a local solution).

However, for some problems, this technique is not guaranteed to
produce the best globally optimal solution.

Example
Change-Making Problem

For anyone who’s had to work a service job, this is a familiar
problem: we want to give change to a customer, but we want to
minimize the number of total coins we give them.

Problem

Given An integer n and a set of coin denominations (c1, c2, . . . , cr)
with c1 > c2 > · · · > cr

Output A set of coins d1, d2, · · · , dk such that
∑k

i=1 di = n and k
is minimized.

Example
Change-Making Algorithm

Change

Input : An integer n and a set of coin denominations (c1, c2, . . . , cr)
with c1 > c2 > · · · > cr.

Output : A set of coins d1, d2, · · · , dk such that
Pk

i=1 di = n and k is
minimized.

C ← ∅1

for i = 1, . . . , r do2
while n ≥ ci do3

C ← C ∪ {ci}4

n← n− ci5

end6

end7

output C8

Change-Making Algorithm
Analysis

Will this algorithm always produce an optimal answer?

Consider a coinage system:

I where c1 = 20, c2 = 15, c3 = 7, c4 = 1
I and we want to give 22 “cents” in change.

What will this algorithm produce?

Is it optimal?

It is not optimal since it would give us one c4 and two c1, for three
coins, while the optimal is one c2 and one c3 for two coins.

Change-Making Algorithm
Optimal?

What about the US currency system—is the algorithm correct in
this case?

Yes, in fact, we can prove it by contradiction.

For simplicity, let c1 = 25, c2 = 10, c3 = 5, c4 = 1.

Change-Making Algorithm
Proving optimality

Proof.

I Let C = {d1, d2, . . . , dk} be the solution given by the greedy
algorithm for some integer n. By way of contradiction, assume
there is another solution C ′ = {d′1, d′2, . . . , d′l} with l < k.

I Consider the case of quarters. Say in C there are q quarters
and in C ′ there are q′. If q′ > q we are done.

I Since the greedy algorithm uses as many quarters as possible,
n = q(25) + r. where r < 25, thus if q′ < q, then in
n = q′(25) + r′, r′ ≥ 25 and so C ′ does not provide an
optimal solution.

I Finally, if q = q′, then we continue this argument on dimes
and nickels. Eventually we reach a contradiction.

I Thus, C = C ′ is our optimal solution.

Change-Making Algorithm
Proving optimality

Why (and where) does this proof fail in our previous counter
example to the general case?

We need the following lemma:

If n is a positive integer then n cents in change using quarters,
dimes, nickels, and pennies using the fewet coins possible

1. has at most two dimes, at most one nickel at most most
four pennies, and

2. cannot have two dimes and a nickel.

The amount of change in dimes, nickels, and pennies cannot

exceed 24 cents.

