
Algorithm Analysis

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Spring 2006

Computer Science & Engineering 235
Section 2.3 of Rosen
cse235@cse.unl.edu

Notes

Introduction

How can we say that one algorithm performs better than another?

Quantify the resources required to execute:

I Time

I Memory

I I/O

I circuits, power, etc

Time is not merely CPU clock cycles, we want to study algorithms
independent or implementations, platforms, and hardware. We
need an objective point of reference. For that, we measure time by
“the number of operations as a function of an algorithm’s input
size.”

Notes

Input Size

For a given problem, we characterize the input size, n,
appropriately:

I Sorting – The number of items to be sorted

I Graphs – The number of vertices and/or edges

I Numerical – The number of bits needed to represent a number

The choice of an input size greatly depends on the elementary
operation; the most relevant or important operation of an
algorithm.

I Comparisons

I Additions

I Multiplications

Notes



Orders of Growth

Small input sizes can usually be computed instantaneously, thus we
are most interested in how an algorithm performs as n →∞.

Indeed, for small values of n, most such functions will be very
similar in running time. Only for sufficiently large n do differences
in running time become apparent. As n →∞ the differences
become more and more stark.

Notes

Intractability

Problems that we can solve (today) only with exponential or
super-exponential time algorithms are said to be (likely)
intractable. That is, though they may be solved in a reasonable
amount of time for small n, for large n, there is (likely) no hope of
efficient execution. It may take millions or billions of years.

Tractable problems are problems that have efficient (read:
polynomial) algorithms to solve them. Polynomial order of
magnitude usually means there exists a polynomial p(n) = nk for
some constant k that always bounds the order of growth. More on
asymptotics in the next slide set.

Intractable problems may need to be solved using approximation or
randomized algorithms.

Notes

Worst, Best, and Average Case

Some algorithms perform differently on various inputs of similar
size. It is sometimes helpful to consider the Worst-Case, Best-Case,
and Average-Case efficiencies of algorithms. For example, say we
want to search an array A of size n for a given value K.

I Worst-Case: K 6∈ A then we must search every item (n
comparisons)

I Best-Case: K is the first item that we check, so only one
comparison

Notes



Average-Case

Since any worth-while algorithm will be used quite extensively, the
average running-time is arguably the best measure of its
performance (if the worst-case is not frequently encountered). For
searching an array, and assuming that p is the probability of a
successful search, we have:

Cavg(n) =
p + 2p + . . . + ip + . . . np

n
+ n(1− p)

=
p

n
(1 + 2 + . . . + i + . . . + n) + n(1− p)

=
p

n

(n(n + 1)
2

+ n(1− p)

If p = 1 (search succeeds), Cavg(n) = n+1
2 ≈ .5n.

If p = 0 (search fails), Cavg(n) = n.
A more intuitive interpretation is that the algorithm must examine,
on average, half of all elements in A.

Notes

Average-Case

Average-Case analysis of algorithms is important in a practical
sense. Often, Cavg and Cworst have the same order of magnitude
and thus, from a theoretical point of view, are no different from
each other. Practical implementations, however, require a
real-world examination.

Notes

Mathematical Analysis of Algorithms

After developing pseudo-code for an algorithm, we wish to analyze
its efficiency as a function of the size of the input, n in terms of
how many times the elementary operation is performed. Here is a
general strategy:

1. Decide on a parameter(s) for the input, n.

2. Identify the basic operation.

3. Evaluate if the elementary operation depends only on n
(otherwise evaluate best, worst, and average-case separately.

4. Set up a summation corresponding to the number of
elementary operations

5. Simplify the equation to get as simple of a function f(n) as
possible.

Notes



Analysis Examples
Example I

Consider the following code.

Algorithm (UniqueElements)

Input : Integer array A of size n

Output : true if all elements a ∈ A are distinct

for i = 1, . . . , n− 1 do1
for j = i + 1, . . . , n do2

if ai = aj then3
return false4

end5

end6

end7

return true8

Notes

Analysis Example
Example I - Analysis

For this algorithm, what is

I The elementary operation?

I Input Size?

I Does the elementary operation depend only on n?

The outer for-loop is run n− 2 times. More formally, it contributes

n−1∑
i=1

Notes

Analysis Example
Example I - Analysis

The inner for-loop depends on the outer for-loop, so it contributes

n∑
j=i+1

We observe that the elementary operation is executed once in each
iteration, thus we have

Cworst(n) =
n−1∑
i=1

n∑
j=i+1

1 =
n(n− 1)

2

Notes



Analysis Example
Example II

The parity of a bit string determines whether or not the number of
1s appearing in it is even or odd. It is used as a simple form of
error correction over communication networks.

Algorithm (Parity)

Input : An integer n in binary (b[])

Output : 0 if the parity of n is even, 1 otherwise

parity← 01

while n > 0 do2
if b[0] = 1 then3

parity← parity + 1 mod 24

right-shift(n)5

end6

end7

return parity8

Notes

Analysis Example
Example II - Analysis

For this algorithm, what is

I The elementary operation?

I Input Size?

I Does the elementary operation depend only on n?

The while-loop will be executed as many times as there are 1-bits
in its binary representation. In the worst case, we’ll have a bit
string of all ones.

The number of bits required to represent an integer n is

dlog ne

so the running time is simply log n.

Notes

Analysis Example
Example III

Algorithm (MyFunction(n, m, p))

Input : Integers n, m, p such that n > m > p

Output : Some function f(n, m, p)

x = 11

for i = 0, . . . , 10 do2
for j = 0, . . . , n do3

for k = m/2, . . . , m do4
x = x× p5

end6

end7

end8

return x9

Notes



Analysis Example
Example III - Analysis

I Outer Loop: executed 11 times.

I 2nd Loop: executed n + 1 times.

I Inner Loop: executed about m
2 times.

I Thus we have

C(n, m, p) = 11(n + 1)(m/2)

I But, do we really need to consider p?

Notes

Summation Tools I

Section 3.2 (p229) has more summation rules. You can always use
Maple to evaluate and simplify complex expressions (but know how
to do them by hand!).

To invoke maple, on cse you can use the command-line interface
by typing maple. Under unix (gnome or KDE) or via any xwindows
interface, you can use the graphical version via xmaple.

Will be demonstrated during recitation.

Notes

Summation Tools II

Example

> simplify(sum(i, i=0..n));

1
2
n2 +

1
2
n

> Sum(Sum(j, j=i..n), i=0..n);

n∑
i=0

 n∑
j=1

j



Notes


