Title: Inference in First-Order Logic
AIMA: Chapter 9

\author{

```
Berthe Y. Choueiry (Shu-we-ri) choueiry@cse.unl.edu, (402)472-5444
```

}

Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\frac{\exists v \alpha}{\operatorname{Subst}(\{v / k\}, \alpha)}
$$

E.g., $\exists x \operatorname{Crown}(x) \wedge O n H e a d(x, J o h n)$ yields

$$
\operatorname{Crown}\left(C_{1}\right) \wedge \text { OnHead }\left(C_{1}, \text { John }\right)
$$

provided C_{1} is a new constant symbol, called a Skolem constant Another example: from $\exists x d\left(x^{y}\right) / d y=x^{y}$ we obtain

$$
d\left(e^{y}\right) / d y=e^{y}
$$

provided e is a new constant symbol

UI and EI

UI can be applied several times to add new sentences; the new KB is logically equivalent to the old
EI can be applied once to replace the existential sentence; the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

Reduction to propositional inference (I)
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
$\operatorname{King}(J o h n)$
Greedy(John)
Brother(Richard, John)
Instantiating the universal sentence in all possible ways, we have:
$\operatorname{King}(J o h n) \wedge \operatorname{Greedy}(J o h n) \Rightarrow \operatorname{Evil}(J o h n)$
King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)

Brother(Richard, John)
The new KB is propositionalized: proposition symbols are:
King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction to propositional inference (II)

- Claim: a ground sentence* is entailed by new KB iff entailed by original KB
- Claim: every FOL KB can be propositionalized so as to preserve entailment
- Idea: propositionalize KB and query, apply resolution, return result
- Problem: with function symbols, there are infinitely many ground terms, e.g., Father (Father (Father(John)))

 Reduction to propositional inference (III)

- Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositional KB
- Idea: For $n=0$ to ∞ do
create a propositional KB by instantiating with depth- n terms
see if α is entailed by this KB
- Problem: works if α is entailed, loops if α is not entailed
- Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with propositionalization

Propositionalization generates lots of irrelevant sentences.
E.g., from
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
King(John)
$\forall y G r e e d y(y)$
Brother (Richard, John)
it seems obvious that $\operatorname{Evil}(J o h n)$, but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations!

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match $\operatorname{King}(J o h n)$ and Greedy (y)
$\theta=\{x /$ John, $y /$ John $\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$
っ

p	q	θ
Knows $($ John,$x)$	Knows $($ John, Jane $)$	$\{x / J a n e ~\}$
Knows $($ John, $x)$	Knows $(y, O J)$	$\{x /$ OJ, y/John $\}$
Knows $($ John, $x)$	Knows $(y$, Mother $(y))$	$\{y / J o h n, x /$ Mother $($ John $)\}$
Knows $($ John,$x)$	Knows $(x, O J)$	fail

Generalized Modus Ponens (GMP)

$\frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta} \quad$ where $p_{i}{ }^{\prime} \theta=p_{i} \theta$ for all i

ت

$$
\begin{array}{rc}
p_{1}{ }^{\prime} \text { is } \operatorname{King}(\operatorname{Joh} n) & p_{1} \text { is } \operatorname{King}(x) \\
{p_{2}}^{\prime} \text { is } \operatorname{Greedy}(y) & p_{2} \text { is } \operatorname{Greedy}(x) \\
\theta \text { is }\{x / J o h n, y / J o h n\} & q \text { is } \operatorname{Evil}(x) \\
q \theta \text { is } \operatorname{Evil}(\operatorname{Joh} n) &
\end{array}
$$

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

 Example of KB (3)

An enemy of America counts as "hostile":
$\operatorname{Enemy}(x$, America $) \Rightarrow \operatorname{Hostile}(x)$
ØI
West, who is American ...
American(West)

The country Nono, an enemy of America...
Enemy (Nono, America)
\square

X•日
 Properties of forward chaining

- Sound and complete for first-order definite clauses (proof similar to propositional proof)
- $\underline{\text { Datalog }}=$ first-order definite clauses $+\underline{\text { no functions (e.g., }}$ crime KB) FC terminates for Datalog in poly iterations: at most $p \cdot n^{k}$ literals
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is semidecidable
\qquad

Efficiency of forward chaining

- Simple observation: no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$
\Rightarrow match each rule whose premise contains a newly added literal
- Matching itself can be expensive
- Database indexing allows $O(1)$ retrieval of known facts
l e.g., query $\operatorname{Missile}(x)$ retrieves $\operatorname{Missile}\left(M_{1}\right)$
- Matching conjunctive premises against known facts is NP-hard
- Forward chaining is widely used in deductive databases
\square

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
\Rightarrow fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure) \Rightarrow fix using caching of previous results (extra space!)
- Widely used (without improvements!) for logic programming

Resolution: brief summary

Full first-order version:
$\frac{l_{1} \vee \cdots \vee l_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\left(l_{1} \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}$ where $\operatorname{Unify}\left(l_{i}, \neg m_{j}\right)=\theta$.

For example,
with $\theta=\{x / K e n\}$
Apply resolution steps to $C N F(K B \wedge \neg \alpha)$; complete for FOL

Conversion to CNF (I)

Everyone who loves all animals is loved by someone:
$\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]$

1. Eliminate biconditionals and implications

$$
\forall x[\neg \forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \quad \neg \exists x, p \equiv \forall x \neg p$:

$$
\begin{gathered}
\forall x[\exists y \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)] \\
\forall x[\exists y \neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)] \\
\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
\end{gathered}
$$

Conversion to CNF (II)

3. Standardize variables: each quantifier should use a different one

$$
\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]
$$

4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

$$
\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)
$$

5. Drop universal quantifiers:

$$
[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)
$$

6. Distribute \wedge over \vee :
$[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

