
CSCE476/876 Spring 2004

Homework 3: Programming Assignment
Using Emacs and Common Lisp

Assigned on: Monday February 7, 2005.

Due: Monday February 14, 2005.

The goal of this programming assignment is to familiarize you with Common Lisp by
demonstrating a few simple programs and asking you to write a few more. For each of the
problems, create a separate lisp file. Name them problem1.lisp, problem2.lisp, and so
on. Store all of your work on a given problem in the same file. When required to define
several functions, put them all in the same file.

Getting started

You have already seen most of the content of this “getting started” section during the
recitations. We just want to insist and make sure that you have gone through the steps
below.

Emacs is more than a simple (and powerful) editor: it provides you with a terrific envi-
ronment for running a Common Lisp interpreter. Emacs may seem a little confusing at the
beginning, but your efforts will quickly pay off.

1. Carefully follow the instructions provided during recitation for setting up your envi-
ronment, then conscientiously go through the Emacs tutorial:

http://csce.unl.edu/∼choueiry/emacs-tutorial.txt

2. Check out the key-stroke accelerators provided in
http://cse.unl.edu/∼choueiry/emacs-lisp.html .

Open an Emacs buffer, create a file my-test.lisp, write a Lisp function, and test it.
In particular, load a file (C-x C-f), check how TAB and the Space bar achieve comple-
tion of commands and file names, interrupt a command (C-g), delete a line in a buffer
(C-k), move forward and backward in the buffer (C-f, C-b, M-f, M-b, etc.), save the
modifications in the buffer to the file (C-x C-f), check the message in the mini buffer),
kill an open buffer (C-x k)

3. Start a Lisp interpreter in Emacs by typing M-x fi:common-lisp (check out comple-
tion with the space bar by typing M-x fi:com<space-bar>). Answer yes by typing
<return> to all questions asked in the mini-buffer (until you learn to do otherwise).
Now you should have a prompt sign of the Lisp interpreter. This is a loop that reads

1



whatever you type in and evaluates it as a Lisp expression as soon as you hit the carriage
return. Practice your knowledge of Emacs and interactions with the Lisp interpretor
by executing all the instructions in Chapter 2, 3, and 4 of LWH. In particular,

• Test the functions car, cdr, cadr, cdar, first, length which operate on a list.

• Test cons, append and list and note the differences between them with respect
to their input and output.

• Test push, pop, pushnew, delete and remove and note whether or not they are
destructive.

• Test unary predicates atom, listp, consp, null, evenp, oddp, etc. on atoms,
numbers, lists, NIL and T as input.

• Test the binary predicate =. The test eq, eql and equal. For instance, define:
(setf ls1 ’(a b c)) and (setf ls2 ’(b c)). Now, Test:
(eq (cdr ls1) ls2) and (equal (cdr ls1) ls2). What do you conclude?

• Read about and test the constructs if, when, cond, do, do*, dolist, dotimes,
mapcar, find, reduce (my absolute favorite), some, every,

• Read about and test the functions on sets (as lists): intersection, union,
set-difference, member, subseteq, adjoin.

4. Save some of the functions you have written in the file my-test.lisp. Exit Lisp by typ-
ing :exit in the Lisp interpreter and start Lisp again typing M-x fi:com<space-bar>.
You can load the functions you have written in my-test.lisp in the Lisp environment
by typing in your lisp buffer:

(load "<path>/my-test.lisp")

Emacs provides also some quick commands: :ld ~/<path>/my-test.lisp. To have
a list of all the abbreviated commands provided by emacs, type in your Lisp buffer
help. Note that all abbreviated commands start with :.

5. Exit Lisp with :ex and quit emacs C-x C-c.

Now, it is time to jump into the fire! Do not hesitate to ask the TA and RAs for help.

1 Exponentiate (5 points)

Write the function (power n m) that raises and number n to an integer power m. For
example, (power 3 2) should return 9.

2 Fourth list element (5 points)

Common Lisp has a number of built-in functions that return the fourth item in a list. For ex-
ample (fourth ’(a b c d e f g)) and (nth 3 ’(a b c d e f g)) return D. Write the

2



function (my-fourth ls) that performs the same operation on list ls. You can define
this function recursively or iteratively, as you desire, but don’t simply call the built-in
function. Since this is meant to duplicate the functionality of fourth, the function call
(my-fourth ’(a b c d e f g)) should also return D.

3 Learn to use reduce (5 points)

Find an on-line manual of Lisp, such as:
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html

http://www.franz.com/support/documentation/6.2/ansicl/ansicl.htm

and study the definition and use of the function reduce. This is a particularly elegant and
powerful construct. Using reduce, write a very short function that takes a list of numbers
and returns the value of their average.

4 The cond conditional (10 points)

Review the syntax of the cond conditional operator. You will use it in this problem to handle
a three case situation. Write a function (sign n) that will return - if the argument is less
than zero, 0 if the argument is equal to zero, or + if the argument is greater than zero. For
example, (sign -91) will return - and (sign 31337) will return +. Use cond to test for
which value to return.

5 Even numbers (10 points)

Common Lisp has built-in functions that can be used to test whether a value is even or odd.
These functions are called evenp and oddp. Both function take a single integer argument.
Experiment with them to see what they do. Write a function (all-even list) that will
take a list of integers and return a list containing only the even integers. For example

(all-evenp ’(1 2 3 4 5 6 7 8 9 10))

should return (2 4 6 8 10). This can easily be done by using a loop to iterate across the
list and using the evenp function to decide whether or not to save the current element.

6 Member (10 points)

Common Lisp has a built-in function called member, which is called with the syntax
(member element list)

and will return nil if the element is not found in the list. If, on the other hand, the
element is found in the list, the function will return a portion of the list, starting with the
first occurrence of the element. For example, (member ’b ’(a b c d)) will return (B C D).

3



Also, observe that (member ’b ’(a b c a b c)) returns (B C A B C). Experiment with
the function, to be certain that you understand what it does.

1. Write a function (my-member-cond element list) that duplicates the functionality
of the built-in member function. Implement the function using cond and a recursive
call.

2. Write a function (my-member-do element list) that duplicates the functionality of
the built-in member function. Implement the function iteratively, using the do primitive
(see page 117 in your Lisp textbook).

7 Find (10 points)

Common Lisp has a built-in function called find, which is called with the syntax
(find element list)

and will return nil if the element is not found in the list. If, on the other hand, the
element is found in the list, the function will simply return that element. For example,
(find ’b ’(a b c d)) will return B. Observe that (find ’b ’(a b c a b c)) also re-
turns B. Modify the my-member- functions that you wrote for the above problem to duplicate
the built-in find function. This is a very simple task.

1. Create a function (my-find-cond element list) that uses recursion.

2. Create a function (my-find-do element list) that uses iteration.

8 List iteration (Total 20 points, 5 points each)

The goal of this exercise is to make you use various constructs of Common Lisp to iterate
over the elements of list. You are asked to write a function double-xx that takes as input
a list of numbers such as ’(3 22 5.2 34) and returns a list of “doubled-up” numbers
’(6 44 10.4 68).

1. Write double-mapcar using mapcar.

2. Write double-dolist using dolist.

3. Write double-do using do.

4. Write double-recursive using cond and recursive calls.

4



9 Exify (10 points)

Write a recursive function exify that takes a list as input and returns a list in which all
non-nil elements are replaced by the atom X.
Test it first on: (exify ’(1 hello 3 foo 0 nil bar)).
It should return: (X X X X X NIL X).
Then test it on: (exify ’(1 (hello (3 nil (foo)) 0 (nil)) (((bar))))).
It should return: (X (X (X NIL (X)) X (NIL)) (((X)))).

10 Count occurrences (10 points)

Write a recursive function count-anywhere that takes an atom and an arbitrary nested list
as input and counts the number of times the atom occurs anywhere within the list. Example
(count-anywhere ’a ’(a (b (a) (c a)) a)) returns 4.

11 Dot Product (5 points)

Write a function that computes the dot product of two sequences of numbers represented
as lists. Assume that the two lists given as input have the same length. The dot product
is computed by multiplying the corresponding elements and then adding up the resulting
product. Example:

(dot-product ’(10 20) ’(3 4))) = 110

(dot-product ’(1 2 4 5) ’(3 4 3 4)) = 43

12 X-product (25 points)

Write a function that takes a function name and two lists and returns the x-product defined
by applying the function on the elements of the lists at the same position. Example:
(x-product #’+ ’(1 2 3) ’(10 20 30)) returns (11 12 13 21 22 23 31 32 33) and
(x-product #’list ’(1 2 3) ’(a b c))

returns ((1 A) (2 A) (3 A) (1 B) (2 B) (3 B) (1 C) (2 C) (3 C))

13 Bonus: Cartesian Product (30 points)

Write a function that takes a list of any number of lists and return the Cartesian product:
(k-product ’((a b c) (1 2 3)))

returns: ((A 1) (A 2) (A 3) (B 1) (B 2) (B 3) (C 1) (C 2) (C 3)) and
(k-product ’((a b) (1 2 3) (x y)))

returns: ((A 1 X) (A 1 Y) (A 2 X) (A 2 Y) (A 3 X) (A 3 Y)

(B 1 X) (B 1 Y) (B 2 X) (B 2 Y) (B 3 X) (B 3 Y))

5



Notes:

• The terminology used above (i.e., dot, x-, Cartesian product) is not a strict one.

• Use the time and space profiler of Composer to improve your code. Use the Lisp
function “time” to evaluate the cost of your code. You may want to make sure to do
the right DECLARATIONS for optimizing your code for speed (check a Lisp manual),
etc.

6


