Class Discussion on Advanced Consistency Methods (Sections 8.1-8.3) by Yaling Zheng (March 24-April 2) Scribe: Nurzhan Ustemirov

1 Overview

Until this class we have seen variable-based consistency algorithms. In this chapter, Yaling discussed relation-based consistency enforcing algorithms.

8.1 Relational consistency

Relational-arc-consistency (RAC): given a network \mathbf{R} (CSP) and a relation R_S over a set S, R_S is said to be <u>RAC relative to a variable</u> $x \in S$ iff any instantiation of variables in S-{x} could be extended to a value in D_x that satisfies R_S :

 $\rho(S - \{x\}) \subseteq \pi_{S - \{x\}}(R_S > D_x)$

A relation $\underline{R_S \text{ is RAC}}$ if it is <u>RAC relative</u> to every variable in S. Finally, a CSP is RAC iff every constraint in CSP is RAC.

Example: $\{a, b, c\}$ are variables, R_{ab} and R_{bc} are relations (constraints). And newly formed constraint (shaded rectangle with shaded edges) R_{ac} is RAC relative to 'b'. Where, 'b' is a common variable.

Relational-path-consistency (*RPC*): given a network \mathbf{R} (CSP) and relations R_S and R_D , R_S and R_D are said to be <u>*RPC* relative to a variable</u> $x \in S \cap T$ iff any instantiation of variables in

 $A = S \cup T - \{x\}$ could be extended to a value in D_x that satisfies both R_S and R_D :

$$\rho(A) \subseteq \pi_A(R_S > < R_T > < D_x)$$

A pair of relations <u> R_S and R_D is RPC</u> iff it is <u>RPC relative</u> to every variable in $S \cap T$.

Finally, a CSP is RPC iff every pair of its relations is RPC.

Example: {a, b, c, d, e} are variables, R_{abd} and R_{bce} are relations (constraints). And newly formed constraint R_{adce} is RPC relative to 'b', where 'b' is a common variable.

From class discussion:

- If a graph is complete or triangulated RPC will guarantee global consistency.
- We are inferring a new relation between variables that are not related.
- In binary-CSP we use relations to update domains, while in relational-CSP we use a domain of one variable to update domain of other variables.

Relational-m-consistency (*R*-*m*-*C*): given a network **R** (CSP) and relations $R_{S1}, ..., R_{Sm}, R_{S1}, ..., R_{Sm}$ are said to be <u>*R*-*m*-*C* relative to a variable</u> $x \in \prod_{i=1}^{m} S_i$ iff any instantiation of variables in $A = \mathbf{Y}_{i=1}^{m} S_i - \{x\}$ has an extension to a value in D_x that satisfies all $R_{S1}, ..., R_{Sm}$ constraints:

 $\rho(A) \subseteq \pi_A(><_{i=1}^m R_{Si} >< D_x)$

Set of relations <u>*R*_{S1}, ..., *R*_{Sm} is <u>*R*-m-C</u> iff it is <u>*R*-m-C relative</u> to every variable in $\prod_{i=1}^{m} S_i$. Finally, a CSP is *R*-m-C iff every set of m relations is *R*-m-C, a CSP is strong *R*-m-C if it is *R*-*i*-C for every $i \le m$.</u>

8.1.1 Space-bound vs time-bounds

Relational (i, m)-consistency (R(i,m)-C): a set of relations { R_{S1} , ..., R_{Sm} } is R(i,m)-C iff for every subset (A) of size $i \ A \subseteq \Upsilon_{j=1}^{m} S_{j}$, any consistent assignment to A could be extended to $\Upsilon_{j=1}^{m} S_{j} - A$ that satisfies all relation in the set { R_{S1} , ..., R_{Sm} }. Similarly the CSP would be R(i,m)-C iff every set of size m relations is R(i,m)-C. In addition, a CSP is strong R(i,m)-C iff it is R(j,m)-C for every $j \le i$.

From class discussion:

- Inverse arc consistency and arc consistency are identical (relational (1,1)-consistency and AC)
- Neighborhood inverse consistency was discussed (for those who are interested briefly[4], advanced paper [5])

8.2 Directional-relational-consistency

Directional relational consistency (DRC): given a network **R** (CSP) and ordering $d=(x_1, ..., x_n)$, **R** is m-directionally relationally consistent iff

- for every subset of constraints $\{R_{SI}, ..., R_{Sm}\}$ where the latest variable in any of the constraints' scopes is x_l
- for every A, $A \subseteq \{x_1, ..., x_{l-1}\}$, every consistent assignment to A can be extended to x_l
- simultaneously satisfies all relevant constraints in $\{R_{S1}, ..., R_{Sm}\}$.

Complexity of DRC:

- time complexity of DRC_m along ordering d is $O(nm \cdot (2^m k^2)^{(w^*(d)+1)})$, $w^*(d)$ is width of a directional graph, n is number of variables, and k bounds the domain size
- time complexity of **DRC**₂ is $O(n(4k^2)^{(w^*(d)+1)})$
- complexity of DRC_2 is $O(n \cdot e^2 \cdot t^2)$ where *e* is the number of input relations and *t* bounds the number of tuples in each relation

8.3 Domain and constraint tightness

Domain tightness:

- A strong relational 2-consistent network over bi-valued domains is globally consistent
- A strong relational k-consistent constraint network R=(X,D,C) over domains with at most k values is globally consistent

Constraint tightness:

- A constraint relation R_S of arity r is called m-tight if, for any variable $x_i \in S$ and any instantiation \overline{a} of the remaining r-1 variables in S-{ x_i }, either there are at most m extensions of \overline{a} to x_i that satisfy R_S , or there are exactly $|D_S|$ such extensions
- A strongly relationally (m+1)-consistent constraint network with m-tightness is globally consistent

8.4 Inference for Boolean theories

Resolution operation over two clauses $(\alpha \lor Q)$ and $(\alpha \lor \neg Q)$ returns

 $(\alpha \lor \beta) = EC_{Q'} (\text{mod} els(\alpha \lor Q), \text{mod} els(\beta \lor \neg Q)),$

where Q' is the union of scopes of both clauses excluding Q (there are typos in the slide #44, AND operators should be changed to OR in the second clause, and it is "and" not OR between two clauses).

The *resolution operation* could be generalized extending literals α and β to multiple *conjunctions* of literals as long as both clauses contain a common literal (should be negated in either clause).

Relevance to the discussion: "resolution operation" could modify RC_2 to solve CNF theories. Extended 2-composition from RC_2 is replaced with resolution, and applied until no new resolvents generated.

Similarly "resolution operation" could be used to modify DRC_2 into Directionalresolution (*DR*). In the *DR* algorithm extended 2-composition replaced with resolution and instantiation is replaced with unit resolution.

Input: a Boolean network $\boldsymbol{\varphi}$ in CNF form and an ordering d.

Output: A decision whether ϕ is satisfiable or not.

Reference:

- [1] Yaling Zheng, Lecture Slides
- [2] Rina Dechter, Constraint Processing
- [3] Class, Class discussions
- [4] http://ic.arc.nasa.gov/ic/projects/mba/cs329a/handouts/handout-8.pdf
- [5] <u>ftp://ftp.cs.unh.edu/pub/csp/Papers/aaai96-nic-cde-ecf.ps.gz</u>