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1 Overview 
 

The topic of the class discussion was alternative search techniques for solving 
CSPs. The traditional systematic search we have learned earlier doesn’ t efficiently work 
on large-scale problems. The alternative Local Search implements several approximation 
techniques, saving space and time for solving CSPs. 
 
2 Greedy Local Search (7.1) 
 
A general advantage of a greedy algorithm is its efficiency in terms of both space and 
time. Usually a solution is generated in linear time, which is particularly attractive for 
large problems.  However, unless have very special conditions (see greedy algorithms of 
CSCE 310), it is not in general a complete, sound, or optimal strategy. 
 
How greedy local search works 
 

- The algorithm starts with random instantiation of all variables. 
- Calculates the cost (# of violated constraints)  
- Calculates the improvement (cost) if any variable is changed. In other words by 

how much can we reduce the total cost if a (Single) variable was changed. 
- Selects one with best improvement (max reduction) and changes it. 
- Stops either when the cost reaches 0 (problem is solved) or when it reaches stage 

when no improvement could be made, then algorithm is restarted with new 
random assignment. 

 
For example, consider the pseudo-random instantiation of the 8-queen problem below 
 

Q          Q         Q       
         Q              Q        Q        
   Q          Q         Q      
   Q         Q         Q     
    Q         Q         Q    
     Q         Q         Q   
      Q         Q         Q  
       Q         Q         Q 

Cost=7(cost) for var1              C=1 for var1, C=7 for var2              C=1 for var2 
Thus, moving each queen to place with minimum conflicts the algorithm moves toward 
the solution (hopefully). Unfortunately, the process does not guarantee finding a solution 
and may get stuck in a local minimum. 
 



• Local minima is a situation where the algorithm reached a point that is not a 
solution and from where no improvement could be made to current assignment. 

 
One of the first successful applications of greedy local search is the Traveling 
Salesperson Problem (TSP). The TSP is an optimization problem to find the shortest 
route to visit every city only once. The algorithm starts with a random sequence of the 
cities. Then, making best swaps of the cities the cost is reduced. If no swap improves the 
cost than the algorithm either had reached the solution or is stuck in a local minimum. 
 
Stochastic Local Search (SLS): 
 
Dechter gives SLS algorithm on page 199. 

Input: a constraint Network R, # of MAX_TRIES, a cost function 
Output: A solution iff the problem is consistent, “ false”  otherwise 
Algorithm, 

         - Repeat random initialization MAX_TRIES times, 
- Randomly assign all variables 
- Repeat until no improvements could be made 

- if the cost is global minimum (C=0) then the assignment is a solution 
(probably won’ t happen at the first try) 

- calculate improvement for each VVP if it was changed. 
- choose one that makes maximum improvement of the cost, and change the 

value 
SLS is not perfect and most probably will get stuck in a local minimum. 
 

• The technique saw vast popularity in solving SAT problem, and the term “ value 
flipping”  was introduced in the chapter. Since the domain of variables in SAT 
problems have only two values the “value change” was defined as “value 
flipping” . 

 
Example  7.1.1 (Dechter) 
Given the formula )})()()({ ( CBEDACBAC ¬∨¬∨∨¬∨¬∨¬¬=ϕ .  

- Initially all variable are assigned “1”  (some sort of randomness). 
- The first and the last clauses are violated, thus the cost C=2.  
- Flipping A, E or D does not improve the cost, Where is flipping C or B reduces 

the total cost by 1.  
- Given no preference on choosing certain literal C has been flipped. The first and 

the last clauses are satisfied but the second one is violated. Now, the cost C=1. 
- In the next step B is flipped and the cost is reduced to “0”  (global minima). And 

the solution has been reached. 
 

3 Improving SLS (7.1.1) 
 
The SLS by itself can easily get stuck in a local minimum. To improve SLS the following 
methods were suggested: 



- Improve the selection of the initial assignment (instead of random assignment 
apply heuristics) 

- Improve the nature of the local changes considered (heuristics of algorithms) 
- Try to escape local minima 

- applying heuristics 
- or using different combinations of heuristics 

 
Suggested heur istics: Most of heuristics were briefly summarized, except for Plateau 
search, which lead to mass misunderstanding (including myself). After discussion ate the 
end of the lecture, the heuristic became clear. Later I double checked with a paper by 
Gent and Walsh. They implemented the search on GSAT. It is very good paper for those 
who are interested. You can find the link for the paper at the bottom of scribe. 
 
Plateau search: Local optima reached a flat area could called plateau. When an 
algorithm reaches a plateau, the cost may not be improved. Instead of reinitializing the 
whole assignment, continuing with non-improving “sidewalks”  actually could lead to 
improvements (hopefully). The better local minima could be nearby the plateau and 
limited number of trials (sidewalks) could lead us to find that local minima (if one exists). 
(JAIR / Gent & Walsh). 
 
The rest of the heuristics are from Ryan’s slides. 
 
Constraint Weighting: Where cost function is a weighted sum of the violated 

constraints 
=

i ii aCwaF )(*)(
 where wi is the current weight of constraint Ci and if a 

violates constraint Ci  then 1)( =aCi , otherwise it is equal to 0. At each step the 
algorithm selects a variable-value pair such that its change leads to largest change of 
overall cost function. And at a local minimum the weights of the violated constraint is 
increased by one. 
 
Tabu search: The search was covered in detail last semester. The idea is that a list of last 
n variable-value assignments is kept. And that list is forbidden for next new assignments. 
 
The-Breaking Rules: This heuristics is to resolve the case when several best 
improvements have the same change over the cost. And tie-breaking suggests to pick the 
one that was least recently modified. 
 
Value Propagation: Another heuristic to escape a local minimum is to apply value 
propagation techniques (e.g., arc-consistency or unit resolution) over violated constraints. 
 
Automating Max-Flips: How many flips to do? Or how to decide the value of 
MAX_TRIES? 
The simplest approach for the first – continue as long as there is a progress. For the 
second one the bigger the better. 
More sophisticated approach for max-flips would be to record the time of improvement 
and give the algorithm equivalent duration to try.  



 
 
 
 
Random Walk Strategy (7.2) 
 
Dr. Choueiry: - When we have many solutions “ Randomness”  is a friend. 
 
The greedy choice in the local search could be replaced with random walks (steps) so the 
selection is not based on the best choice but on a random pick. The random step is a 
random selection frm the neighboring states. It avoids getting into the local minimum.  
 
The strategy was first developed for SAT problems. 
WalkSAT algorithm: (slide 15[1] or page 202 of [2]) 

 
Input: constraint network R, MAX_TRIES, MAX_FLIPS, and the probability p 
Output: True if the problem is consistent, false otherwise. 

The algorithm initializes all variables randomly and randomly picks a violated constraint. 
Then with probability p it chooses a random variable-value pair and with probability 1-p 
chooses the best neighbor (greedy choice). So, the algorithm is actually the combination 
of randomness and greedy choice. It is moving toward the least cost and simultaneously 
trying to avoid getting into a local minimum by allowing randomness (to some extent). 
 
 
Simulated Annealing 
 
Was covered in the next lecture. 
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