Summary of class discussion of chapter 9 part 1

Speaker: Anagh Lal
Scribe: Zheying Jane Yang

Corrector: Cate Anderson

April 22, 2003
In this chapter, we covered a new scheme based on tree-decomposition, the main focus of which is the structured network. Because the complexity of this method is bounded by the graph parameter induced-width, w*, we need to consider the topological properties of the constraint graph. If the graph associated with the problem does not have a tree structure, then we can try to transform it into one. But, how can we do this? Which technique is the most efficient way to do this transformation? These questions are associated with the following topics: dual-graphs, join-trees, clique-tree clustering and hyper-tree decompositions.

1 Acyclic Networks

As we know, a tree structure is acyclic. If we can map any given hyper constraint network to a graph, which has a tree structure, then we can apply directional (relational) consistency to it, and make the search cheaper.

1.1 Solving acyclic problems

From Chapter 4, we know that the tree structured binary constraint networks can be solved efficiently because of their induced width of 1. However in the real-word, the constraint networks may not be binary. A non-binary network can be represented as a hyper-graph or hyper-tree, both of which have the variables involved in the non-binary constraint connected by hyper-arcs. The two step process of transformation of a hyper-graph to a tree structure is as follows:

· Transform the non-binary problem into a binary one by using the dual-graph technique.

· Transform the dual-graph into a reduced dual graph ---Join-tree.

1.2 What is a dual-graph?

In a dual-graph, each node is named by the set of variables involved in a constraint of the original graph, the domain of the new node is made up of the legal tuples of that constraint, and the binary constraints of the dual graph are the common variables between any two nodes. Therefore, if the dual graph of a problem happens to be a tree, we can solve it efficiently by the tree-solving algorithm.

In the text, example 9.1.1, Figure 9.1 (c), the dual-graph, though it does not look like one, actually is a tree. When we remove the redundant constraints, we get the join-tree shown in Figure 9.1 (d). The question is how to identify the redundant constraints? In the dual graphs, a constraint and its corresponding arc can be deleted if the variables labeling the arc are shared by every arc along an alternate path between the two variables. Because the alternate path already enforces the equality, removing such constraints does not alter the problem.

2. Connectedness property

Given a dual graph of a hyper-graph, an arc sub-graph of the dual graph satisfies the connectedness property if and only if for every two nodes that share a variable, there is at least one path of labeled arcs containing the shared variables.

· An arc sub-graph of a graph contains all nodes and subset of edges of the graph.

· Join-tree satisfies the connectedness property. A hyper tree has a join-tree, we call it hyper-tree.

3. Acyclic-solving algorithm

(a). An acyclic constraint network can be solved efficiently by the tree-solving algorithm. Since the constraint problem has a join-tree, its dual problem is a tree structure based on binary constraints, therefore it can be solved by tree-solving algorithm. We need to transform the constraint problem into a join-tree, on which we can apply the tree solving algorithm to solve it.

(b). The input of the algorithm is an acyclic constraint network R, which is a join-tree T of R. We assume that the network is relational arc-consistent. The output of the algorithm is either a consistent solution to R, or a global consistency of network.

The procedure of the acyclic-solving algorithm:

(i).
Build an ordering according to the joint-tree structure such that each constraint is before its descendants in the ordering which respects to the selected root node. this can be done as follows:

· Choose any node as a root. this is possible since the graph is in tree-structure. To determine the ordering:

· The root node is first

· All of the children of the root node appear behind it

· Then all of the children of each child of the root node follow.

· The previous step is repeated for each node until all nodes are in the ordering.

· Pick a relation such as Rj from the join-tree in reverse order of d.

· For every relation Rk that comes earlier in the ordering d and connects with Rj, (this means Rk is the parent of Rj):

· Make the join of Rj and Rk, and project over the scope of the relation Rk. Intersect this with Rk,

· If Rk is empty, then the algorithm returns “no solution”

(ii). Apply directional arc-consistency along the join-tree of the dual of the problem. If the problem is DAC consistent, then return a solution.

(c). The time complexity of the acyclic-solving algorithm -As is known, the complexity of a tree-solving algorithm is O(nk2), where n is the number of variables and k is the domain size. Directional arc-consistency is applied from leaves to root along the join-tree of the dual problem. If there are r constraints, each has at most l tuples, then we have the time complexity O(rl2).

(d). The time complexity of the algorithm can be improved by ordering the tuples lexicographically.

· In this algorithm, for every relation Rk connects with Rj, (Rk is the parent of Rj): make join of Rj and Rk,

· Make the join and project the variables shared by Rj and Rk, then intersect with Rk.

· If we can order the tuples lexicographically, then the time complexity will be

 O(l(logl).
(e). Choose an ordering to keep the tree structure. The acyclic solving algorithm applies directional arc-consistency to tree-based constraint network from leaf nodes to root along the join-tree of the dual problem.

(f) What problems are encountered? In the dual problem, the domains of variables are bounded by the number of tuples in the input constraints. If the constraints in a hyper-graph have arities approaching n, then the values in the domains (number of legal tuples) approach kn, which is exponential. To solve this problem, we bound the constraint arity by k. This yields a polynomially solvable problem, reducing the complexity from its prior NP-complete status.

4. Summary of chapter 9 part 1

In chapter 9, section 1, and subsections 1.1.1, 1.1.2, 1.13, we mainly discussed acyclic constraint networks which are tree-based problems. This kind of networks can be solved by relational arc-consistency. We use the join-tree clustering technique to transform a constraint network into an acyclic network, which can then be solved efficiently.

Reference

[1] Anagh Lal, Chapter 9 slides.

[2] Rina Dechter, Constraint processing. 2003 Morgan Kaufman Publishers.
