
Architecture-Centric Software Evolution by Software Metrics and Design
Patterns

Juha Gustafsson, Jukka Paakki, Lilli Nenonen, and A. Inkeri Verkamo

Department of Computer Science, University of Helsinki
P.O. Box 26, FIN-00014 University of Helsinki, Finland, +358 9 191 44180

E-mail: fgustafss,paakki,lnenonen,verkamog@cs.helsinki.fi

Abstract

It is shown how software metrics and architectural pat-
terns can be used for the management of software evolu-
tion. In the presented architecture-centric software evolu-
tion method the quality of a software system is assured in the
software design phase by computing various kinds of design
metrics from the system architecture, by automatically ex-
ploring instances of design patterns and anti-patterns from
the architecture, and by reporting potential quality prob-
lems to the designers. The same analysis is applied in the
implementation phase to the software code, thus ensuring
that it matches the quality and structure of the reference
architecture. Finally, the quality of the ultimate system is
predicted by studying the development history of previous
projects with a similar composition of characteristic soft-
ware metrics and patterns. The architecture-centric soft-
ware evolution method is supported by two integrated soft-
ware tools, the metrics and pattern-mining tool Maisa and
the reverse-engineering tool Columbus.

1. Introduction

A software system is under constant evolution during its
life cycle. The evolution can be roughly seen as divided into
two categories of changes that the system is facing: first, the
system is gradually developed from general requirements to
functional code in several phases (such as design, imple-
mentation, and testing); and second, the functional code is
modified, or maintained, according to various needs from
the users of the system (such as new requirements, bug
fixes, or porting into new environments). Implementation
and management of all these numerous and often sponta-
neous changes in a controlled manner is one of the main
reasons for the cost of developing large and complex soft-
ware systems.

It is commonly accepted that a simple, well-defined

structure makes it easier to maintain a software system with-
out corrupting its quality by unintended side effects [12].
Another universal fact is that the earlier the quality of soft-
ware is assured, the more effective quality assurance is with
respect to the system’s overall development costs [2]. Both
of these objectives can be met by carefully designing the
architecture of the system, by measuring its quality before
entering the actual implementation phase, and by verifying
that the code indeed implements the intended architecture
and the design decisions captured by it. Recently, this ar-
chitectural focus has been widely emphasized both in the
software industry and the research community, as can be
seen from the emergence of software architectures as a cen-
tral discipline in software engineering [21].

Maisa (Metrics for Analysis and Improvement of Soft-
ware Architectures) is a currently ongoing project develop-
ing methods and tools for architecture-based measurement
and assurance of software quality. The core idea in Maisa is
to measure and predict the quality of a software system al-
ready in its design phase, by computing various kinds of
metrics from its architecture, given as a set of UML di-
agrams [18]. In addition to computing standard metrics
such as size and complexity, the Maisa tool approximates
the quality of the architecture also by automatically min-
ing instances of software (design) patterns and anti-patterns
[3, 4, 11] from it.

Maisa keeps track of the evolution of the software system
by storing the measurements in a built-in project database
from which various statistics can be generated, either phase-
wise over the current project or over several projects. In
addition to architectural metrics, measurements of the final
system (such as size and complexity of the software code)
can be stored in the database.

The scope of Maisa has been extended beyond the
software design phase by its integration to the reverse-
engineering tool Columbus[9]. Columbus abstracts the
structure of a software system (written in C or C++) into
a UML class diagram. This class diagram, when consid-
ered as one view over the system’s underlying architecture,

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

can be given as input to Maisa for checking that the imple-
mentation architecture (code) conforms to the design archi-
tecture.

We proceed as follows. First, the evolutionary support
provided by Maisa and Columbus is summarized in Chap-
ter 2. Then, the Maisa method for architectural quality
measurement is presented in Chapter 3. The integration
of Maisa and Columbus for verifying architectural confor-
mance between the code and the design is described in
Chapter 4. The statistical support of Maisa for managing
software evolution is addressed in Chapter 5, followed by a
discussion of related work in Chapter 6. Finally, experience
and future work are summarized in Chapter 7.

2. Software Evolution Management by Maisa
and Columbus

Maisa and Columbus provide support for a software de-
velopment approach where the system is analysed and its
quality is measured long before the testing phase. The met-
rics tool Maisa concentrates on the design phase and the
reverse-engineering tool Columbus on the subsequent cod-
ing phase. Thus, the combination of the tools covers those
phases of a typical software development project where the
architecture of the system is in a central role. Accord-
ingly, Maisa and Columbus can be characterised as a toolset
for measuring, tracking, and managing architecture-centric
software evolution.

Using Maisa and Columbus, one can manage the evolu-
tion and assure the quality of a software system in several
ways. First, the technical quality of the system’s architec-
ture can be measured by computing various metrics over
it. Second, the decisions made by the designers can be re-
covered by extracting instances of (design) patterns from
the architecture. Third, symptoms of poor design decisions
can be found by extracting instances of anti-patterns from
the architecture. Fourth, by using the quality history of ar-
chitecturally similar systems as a base, one can predict the
quality of the system to be built from the architecture. If any
of these steps reveals potential quality problems in the ar-
chitecture, the problems should be studied, an improved ar-
chitecture designed, and the new version of the architecture
analysed by Maisa, until a sufficient level of architectural
quality has been reached and the coding phase can start.

Finally, after the code has been implemented, its confor-
mance to the intended architecture can be verified by us-
ing Columbus to recover the structure (class diagram) of
the code and by using Maisa to compare it to the archi-
tecture as analysed in the design phase. If the structure
of the code does not match the system’s architecture, the
deviations should be studied, the code restructured, and
the architecture recovery process repeated until the soft-
ware patterns found from the code are the same as those

in the reference architecture (and the conventional software
metrics over the code are within acceptable range). Dur-
ing all these stages the measurements are stored in Maisa’s
project database both for phase-wise statistical analyses of
the current project and for supporting quality predictions by
project-wise comparisons.

The architecture-centric software evolution model is de-
picted in Figure 1. Solid arrows represent information gen-
erated by Maisa, and dashed arrows represent quality im-
provements implemented by software designers on the basis
of reports from Maisa. The double arrow between design ar-
chitecture and implementation architecture stands for a met-
rical and structural comparison; Maisa provides a facility
for comparing two architectural measurements. The subject
architectures, metrics, pattern instances, predictions, com-
parison results, as well as statistical charts can be studied in
Maisa, which provides a specific view for each purpose.

Maisa

Maisa

Maisa

Columbus

Maisa

Maisa

Metrics Patterns

Predicted system quality

Metrics Patterns

Predicted system quality

Design architecture

Software code

Implementation architecture

Figure 1. Architecture-centric software evolu-
tion

3. Metrics and Software Patterns in Maisa

The key concept in Maisa is to calculate both traditional
metrics such as the cyclomatic complexity of a state dia-
gram [6] and pattern based metrics such as the relative num-
ber of classes (i.e. the relative amount of classes that are
contained in at least one design pattern instance) as early as
possible. In practice this means using design diagrams, as
they contain the minimum amount of information on which
to base these calculations.

The Maisa tool produces three types of results:

� Simple object-oriented metrics (e.g., number of
classes, number of attributes, number of associations,
number of objects, depth of the inheritance tree)

� Pattern mining results (e.g., number of Singleton pat-
terns and the respective instances in the diagram)

� Pattern-based metrics (e.g., relative number of classes)

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

One advantage of using simple metrics is that many of
them can be calculated accurately already in the design
phase. From the moment we have drawn our first class, we
are ready to calculate the number of classes. Additionally,
most simple metrics don’t require any extensive computa-
tion, so with relatively little effort we can get lots of useful
information for the user.

Currently, we mainly use class diagrams for pattern-
based metrics. Maisa also calculates simple metrics from
collaboration and state diagrams. Additionally, extended
activity diagrams are used for performance analysis [22].

3.1. Constraint satisfaction in pattern mining

With pattern mining the situation is slightly different
from the computation of regular metrics. In principle, we
can search for patterns in any diagram (no matter how
coarse it might be). In practice we need either extremely
detailed diagrams or substantial help from the user, if we
want this search to be precise. Another problem is that the
patterns themselves are often quite vaguely defined.

The constraint satisfaction problem(CSP) [13, 16] is a
generic technique that can be applied to a wide variety of
tasks, in our case mining patterns from software architec-
tures or software code [8, 19]. The CSP consists of vari-
ables and a set of constraints restricting the values that can
be assigned to these variables. Unary constraints restrict the
values of a single variable, while binary constraints repre-
sent a condition for a pair of variables. The CSP is often
modelled as a graph, where the nodes represent the vari-
ables and the arcs represent the constraints.

We define our pattern mining problem as a CSP in the
following way:

� The variables (nodes) represent the roles of a pattern.

� The variable domains are initialised to contain all the
names (identifiers) of the diagram(s) in question.

� Unary constraints represent conditions for a single role
(e.g. the element in role X must be an abstract class).

� Binary constraints represent conditions between two
roles (e.g. the class in role X must be a subclass of
the class in role Y).

For each pattern we have a result, i.e. the bindings that
describe this particular pattern. The number of these bind-
ings depends on the pattern in question. A binding is a pair
frole, elementg, where role is the name of the role and el-
ementis the diagram element that appears in that role, e.g.
in the Factory Method pattern two of the roles are Prod-
uct and Creator that are to be bound to two classes in the
architecture diagram.

3.2. Constraining search space

Even with small variable domains, trying out all combi-
nations takes too much time. In addition, most combina-
tions would make no sense. In our case, this means that if
we require that a certain variable can only have class-typed
values, we can prune all attributes, methods etc. from its
domain. Therefore we must find a way to effectively prune
out impossible candidates, and for this we use the AC-3 al-
gorithm [16].

The AC-3 algorithm is based on the concepts of node
and arc consistency, which correspond to unary and binary
constraints. For instance, node consistency means that all
attribute entities would be pruned from the domain of a vari-
able having a constraint that allows only solutions of type
class. Arc consistency is defined in a similar fashion, but
for a pair of nodes. We delete all values from the domain of
the originating node, for which there are no legal arcs.

3.3. Applying AC-3 algorithm

The first and most trivial requirement is node consis-
tency. Node i is node consistent, iff 8x 2 Di; Pi(x) holds.
The following algorithm ensures node consistency.

procedure NC-1:
begin

for i 1 until n do
begin

Di fx 2 DijPi(x)g
end

end

Thus, for example, all attribute-entities will be pruned by
NC-1 from the domain of a variable having a constraint that
allows only solutions of type class.

Arc consistency is defined in a similar fashion: Arc
(i; j) is arc consistent, iff 8x 2 Di such that Pi(x) holds,
9y 2 Dj such that Pj(y) and Pij(x; y). A more detailed
discussion of arc consistency can be found in [17].

A single arc can be revised using the following pro-
cedure REVISE that returns a boolean value. The idea
is similar to that behind node consistency. We delete all
values from the domain of the originating node Di, for
which there are no ’legal’ arcs:

procedure REVISE((i,j)):
begin

DELETE false
for each x 2 Di do
if 6 9y 2 Dj such that Pij(x; y), then

begin
delete x from Di

DELETE true

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

end
return DELETE

end

The AC-3 algorithm first utilizes the node consistency
algorithm and then the arc consistency revision algorithm
as follows. We denote the entire CSP graph with G and
the respective set of arcs (constraints) with arcs(G).
Additionally we denote the current (non-consistent) set of
arcs with Q, which means that the algorithm halts as soon
as Q is empty.

procedure AC-3:
begin

NC-1
Q f(i; j)j(i; j) 2 arcs(G); i 6= jg
while Q not empty do

begin
select and delete any arc (k;m) from Q

if REVISE((k;m)) then
Q Q[f(i; k)j(i; k) 2 arcs(G); i 6= k; i 6= mg

end
end

After the domains have been made consistent, we search
for correct bindings among the remaining values that satisfy
the current set of constraints. In the simple case we have
only one value for each variable.

3.4. Extensions

Many design patterns are related to each other in the
sense that they have common elements (see e.g. meta-
patterns in [20]). These relationships may be taken advan-
tage of in two ways: the ordered search of patterns and the
use of auxiliary facts. The available information is updated
as the search proceeds: when a particular pattern is being
searched for, new facts pertaining to it are added. These
new facts can be utilized later when searching for other pat-
terns. Consider, for example, that we are searching for in-
stances of the Abstract Factory pattern which has the Fac-
tory Method pattern as its prerequisite. We can make use
of this relationship by dynamically adding new facts of type
FactoryMethod, while searching for instances of the Fac-
tory Method pattern.

3.5. Example

The data in CASE tools has usually not been designed to
be easily exported or even uniform, so the output of CASE
tools and the requirements of Maisa are not directly com-
patible. Therefore we have defined an intermediate format
for transferring the diagrams to Maisa. All UML diagrams
are exported as a set of Prolog facts. These facts are then

read into the Maisa tool. The same notation is also used for
defining the patterns.

Maisa ignores any additional information such as com-
ments that the Prolog files may contain. The format is very
easy to extend as one only needs to add appropriate parser
elements for Maisa to recognize the new patterns. The in-
ternal data structure for the diagrams is very close to UML
structures. As can be seen later, we can also use reverse-
engineered data in the same format.

The procedure itself is straightforward. The diagram is
disassembled into components, and a fact (or a set of facts)
is generated for each component. Other necessary informa-
tion (such as the class a particular method belongs to) is
included in these facts. For example, for each attribute in
a class diagram we generate a fact that states the identifier
and the name of that attribute as well as the class it belongs
to.

For example, the Singleton [11] pattern is specified by
the following facts:

class("Singleton").
attribute("Singleton.instance").
has("Singleton","Singleton.instance").
typeof("Singleton.instance","Singleton").
static("Singleton.instance").

The semantic intent of this pattern is to ensure that a class
has only a single instance. This description states that a Sin-
gleton candidate (class) must have a static attribute whose
type is the same as the class itself.

Figure 2. Design pattern visualization in
Maisa

Figure 2 shows the pattern panel of Maisa. The right-
hand side contains the class diagram that has been mea-
sured. The left-hand side contains two lists: the upper one
shows the pattern instances found in the diagram and the

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

lower one shows the components of the diagram. When
an item has been selected in either of the lists, the corre-
sponding components are highlighted in the diagram. In
this case, all the elements participating in any of the three
selected pattern instances are highlighted. Regular metrics
are shown in another panel (see Table 1).

4. Verifying Architectural Conformance

Columbus [9] is a reverse-engineering tool developed by
the Research Group on Artificial Intelligence in the Uni-
versity of Szeged and the Software Technology Laboratory
of Nokia Research Center. In addition to data extraction,
Columbus supports a number of other related tasks includ-
ing visualization. Columbus is based on plug-ins (e.g. for
extracting or exporting), so the system is easily extendible.

4.1. Integration of Columbus and Maisa

The analysed project in Columbus is represented by an
abstract semantic graph, which can be accessed through an
application programming interface. Maisa, however, is im-
plemented in Java, so the interface cannot be used directly,
but an additional plug-in is required to transform the output
of Columbus to the intermediate format used in Maisa.

Because this high-level information has been generated
from source code, it is much more detailed than that gen-
erated from design diagrams. To take advantage of this,
Maisa can use multiple pattern definitions (i.e. different
sets of constraints). An association, for example, can be
implemented in several ways. If we use reverse-engineered
information, we know this implementation decision exactly.
Thus, we may have more precise pattern definitions yield-
ing more precise results.

4.2. Finding a pattern

If we want to search for the Singleton design pattern (see
Chapter 3.5), we may use facts generated from a design di-
agram or we may analyse C++ code with Columbus.

A Singleton could be declared in C++ as:

class System {
public:
static System* Instance();

protected:
System() {};

private:
static System* instance;

};

with the implementation:

System* System::instance = 0;

System* System::Instance() {
if (instance==0) {
instance=new System();

}
return instance;

}

Either way, we should obtain at least the following facts:

class("System").
method("System.Instance()").
public("System.Instance()").
static("System.Instance()").
has("System","System.Instance()").
returns("System.Instance()","System").
method("System.System()").
protected("System.System()").
has("System","System.System()").
attribute("System.instance").
private("System.instance").
static("System.instance").
has("System","System.instance").
typeof("System.instance","System").

When matching this description with the definition of the
Singleton pattern, Maisa produces the following bindings,
with the role on the left-hand side and the diagram (or code)
element on the right-hand side:

Singleton.instance = System.instance
Singleton = System

This result also appears in the pattern panel (cf. Fig-
ure 2).

5. Statistical Architecture Evolution

The statistic diagrams can be drawn by Maisa either from
a single set of metric results related to a certain version of
an architecture or from a history data repository, where the
calculated metric data has been explicitly saved. To support
time series analysis, the repository contains as detailed met-
ric results as possible, i.e. each metric calculated per each
project, diagram and/or class when appropriate. The met-
ric values are supplied with timestamps which express the
calculation moment of the metric.

Maisa supports four statistic diagram types. They are
tailored to the needs of architectural analysis.

Time series diagram presents the values of one metric
with respect to time as a scatter plot, the time running

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

on the x axis. This diagram can only be drawn from
repository data.

Distribution diagram presents the distribution of one
metric as a histogram. The system does not use normal
approximation but the histogram is constructed from a
classified sample.

Correlation diagram presents the correlation of two met-
rics as a scatter plot.

Pattern distribution diagram presents the distribution of
the recognized pattern instances as a histogram. The
diagram is drawn from a nominal sample, one bar per
pattern. This is the only diagram offered for non-
numeric metrics.

When generating a diagram, the user can bound the sam-
ple data to all architectures or a certain architecture. When
examining pattern instance count, the sample data can be
bound further to instances of all patterns or a certain pat-
tern. Thus, Maisa offers quite an extensive compilation of
diagrams describing the architecture from different perspec-
tives. The system also calculates the appropriate statistic
key figures from the corresponding distribution.

Maisa is not dependent of any specific quality system
but the quality of an architecture is indicated by a group
of metrics, selected by the user. Let us study the example
architecture (shown in Figure 2). Let us assume that it has
been measured eight times with the results shown in Table 1.

NOC NOMA Patterns Pattern Relative
instances NOC

7 3 0 0 0/7 = 0
7 21 1 10 6/7 = 0.857
13 47 2 30 12/13 = 0.923
15 50 2 32 15/15 = 1
15 53 3 40 15/15 = 1
15 45 2 35 13/15 = 0.867
15 49 2 38 14/15 = 0.933
15 57 3 40 15/15 = 1

Table 1. Metric results of the example archi-
tecture.

In Figure 3 we see the pattern coverage of the architec-
ture in a time series diagram, expressed as relative NOC,
the values varying from zero to one. The points in the dia-
gram correspond to the metric calculations of one version of
the architecture. The pattern coverage has risen during the
design phase. The sixth measurement and the succeeding
ones are from the code. The pattern coverage in the sixth
measurement has dropped, because the pattern structure of

the code has not been equivalent to the designed architec-
ture. This indicates that the quality of the architecture has
also dropped. After improving the code, the last measure-
ment shows the code to fit the design, with the pattern-based
quality now assured.

Figure 3. Pattern coverage of the sample ar-
chitecture in time series.

All the above listed metrics describe the architecture
from their own perspective, none of them indicating the al-
teration of the quality in full. In Figure 3, the pattern cov-
erage seems to rise quite rapidly. However, there is only
one class in the second and third version that is not cov-
ered by any pattern – very possibly the same class in both
cases – but when the architecture contains fewer classes,
each one weighs more. The same phenomenon can be seen
in the sixth and seventh measurement with two and one non-
pattern class respectively. The number of classes remains
the same after the first three versions. The number of pattern
instances rises between the fourth and fifth version, which
cannot be seen in the diagram, because the pattern coverage
remains the same. It must be noted that relative NOC is not
the same metric as NOC per number of pattern instances.
The former measures the percentage of classes that are cov-
ered with at least one pattern, whereas the latter does not
indicate how smoothly the pattern instances are distributed
among the classes. Thus, the pattern coverage is more de-
scriptive than mere pattern count, pattern instance count or
number of classes – though not a perfect one.

The formerly collected metric data can be used to reason
the quality of the system under development. The reposi-
tory can be searched for reference systems whose architec-
tural metrics profile is similar to that of the current system
(with one subprofile as in Figure 3). The quality of the best
matching reference system can then be used as a predictor
for the ultimate quality of the current system.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

6. Related Work

Recent research on software measurement includes em-
pirical studies about a large telecommunications system [5]
and code decay [7]. Although there are metrics that are
available early on (such as the number of events for a class,
pointed out in [5]), the emphasis is still mostly on code-
based evaluation.

There has also been some research on how well the tradi-
tional metrics estimate the quality of software and whether
software estimation is even possible [15].

Research on mining design patterns [1] is increasing.
One problem with the UML is that it lacks a precise way of
modelling design patterns, or software architectures in gen-
eral. As a result, some proposals for a more explicit support
for design patterns in UML have been presented [10, 14].

Software metrics, design pattern mining, reverse-
engineering, and statistical analysis have been indepen-
dently studied quite actively, but the combination of all
these as provided by Maisa (and Columbus) is a unique
approach. So far, the experiences with this kind of an
architecture-centric software evolution tool set are most
promising.

7. Conclusions and Future Work

We have presented Maisa, a Java-based tool for evaluat-
ing software architectures. Besides supporting many tradi-
tional object-oriented metrics, Maisa is also capable of min-
ing design patterns from a software architecture expressed
as a project of UML diagrams. This can be utilized in nu-
merous ways, the simplest of which is the visualization of
design pattern instances.

While Maisa has originally been developed to help in
software design, we have also presented some examples of
how Maisa can be used cooperatively with other software
tools (in our case the Columbus reverse-engineering tool)
to keep track of the change history of a software product.
To better support cooperative use, we are considering other
exchange formats (such as the XMI) for Maisa.

Currently we are conducting further experiments with
larger industrial systems as well as incorporating UML-
based performance evaluation to Maisa.

Also, as part of our experiments, we are extending the
pattern library with domain specific patterns. This is done
in close cooperation with our industrial partners.

Maisa will become a part of a larger UML toolset,
which will be developed in UML++, a collaborative re-
search project of the universities of Helsinki and Tampere,
and the Tampere University of Technology.

Acknowledgements

The Maisa development project is funded by the Na-
tional Technology Agency of Finland and by four IT com-
panies: Kone, Nokia Mobile Phones, Nokia Research Cen-
ter, and Space Systems Finland. The integration of Maisa
and Columbus has been implemented by Rudolf Ferenc and
László Müller from the University of Szeged. The pattern
visualization facility in Maisa has been designed and imple-
mented by Minna Majuri and the pattern mining facility has
been implemented by Pauli Misikangas.

References

[1] F. Bergenti and A. Poggi. IDEA: A design assistant based
on automatic design pattern detection. In Proceedings of
12th International Conference on Software Engineering and
Knowledge Engineering (SEKE 2000), pages 336 – 343,
2000.

[2] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[3] W. Brown, R. Malveau, H. McCormick III, and T. Mow-
bray. AntiPatterns — Refactoring Software, Architectures,
and Projects in Crisis. John Wiley & Sons Inc., 1998.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture : A System
of Patterns. John Wiley & Sons Inc., 1996.

[5] M. Cartwright and M. Shepperd. An empirical investigation
of an object-oriented software system. IEEE Transactions
on Software Engineering, 26(8):786 – 796, 2000.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object-oriented design. IEEE Transactions on Software En-
gineering, 20(6):476 – 493, 1994.

[7] S. Eick, T. Graves, A. Karr, J. Marron, and A.Mockus. Does
code decay? Assessing the evidence from change manage-
ment data. IEEE Transactions on Software Engineering,
27(1):1 – 12, 2001.

[8] R. Ferenc, J. Gustafsson, L. Müller, and J. Paakki. Rec-
ognizing design patterns in C++ programs with the integra-
tion of Columbus and Maisa. In Proceedings of the 7th
Symposium on Programming Languagesand Software Tools
(SPLST’2001), pages 58 – 70, 2001.

[9] R. Ferenc, F. Magyar, Á. Beszédes, G. Márton, M. Tarki-
ainen, and T. Gyimóthy. Columbus 2.0 — tool for reverse
engineering large object oriented software systems. Techni-
cal Report TR-2000-002, University of Szeged, 2000.

[10] M. Fontoura and C.J.P.de Lucena. Extending UML to
improve the representation of design patterns. JOOP,
13(11):12 – 19, 2001.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[12] V. Gibson and J. Senn. System structure and software main-
tenance performance. CACM, 32(3):347 – 358, 1989.

[13] V. Kumar. Algorithms for constraint-satisfaction problems.
AI Magazine, 13(1):32 – 44, 1992.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

[14] A. Le Guennec, G. Sunyé, and J.-M. Jézéquel. Precise mod-
eling of design patterns. In Proceedings of�UML� 2000.
Third International Conference, pages 482 – 496, 2000.

[15] J. Lewis. Limits to software estimation. ACM Software En-
gineering Notes, 26(4):54 – 59, 2001.

[16] A. Mackworth. Consistency in network of relations. Artifi-
cial Intelligence, 8(1):99 – 118, 1977.

[17] R. Mohr and T. Henderson. Arc and path consistency revis-
ited. Artificial Intelligence, 28:225 – 233, 1986.

[18] OMG Unified Modeling LanguageSpecification Version1.3.
c
1999 Object Management Group, Inc.

[19] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A. I.
Verkamo. Software metrics by architectural pattern mining.
In Proceedingsof the International Conferenceon Software:
Theory and Practice (16th IFIP World Computer Congress),
pages 325 – 332, 2000.

[20] W. Pree. Design Patterns for Object-Oriented Software De-
velopment. Addison-Wesley, 1995.

[21] M. Shaw and D. Garlan. SoftwareArchitecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[22] A. Verkamo, J. Gustafsson, L. Nenonen, and J. Paakki. De-
sign patterns in performance prediction. In Proceedings of
the Second International Workshop on Software and Perfor-
mance (WOSP 2000), pages 143 – 144, 2000.

Proceedings of the Sixth European Conference on Software Maintenance and Reengineering (CSMR�02)
1534-5351/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

