8.5 Row Convex Constraints

CSCE990-06 Eric Moss April 7, 2003

1

Outline

- In the case of *row-convex* constraints, relational path consistency guarantees global consistency.
- Thus we should search for row-convexity where we can.

Definitions

- **Functional** A binary relation R_{ij} expressed as a (0,1) matrix is *functional* if and only if there is at most a single "1" in any row or column of R_{ij} .
- **<u>Monotone</u>** Given some ordering of the domain of values for all variables, a binary relation R_{ij} expressed as a (0,1) matrix is *monotone* if the following conditions hold: if $(a,b) \in R_{ij}$ and $c \ge a$, then $(c,b) \in R_{ij}$, and if $(a,b) \in R_{ij}$ and $c \le b$, then $(a,c) \in R_{ij}$.
- **Row Convex** A binary relation R_{ij} represented as a (0,1) matrix is *row convex* if in each row (column) all of the ones are consecutive; that is, no two ones within a single row are separated by a zero in that same row (column).

Examples

Functional

Monotone

Row Convex

(0,1) Representations

Arc-consistency looks like:

Path-consistency looks like:

Convexity & Intersection

Lemma 8.5.4 Let F be a finite collection of (0,1)-row vectors that are row convex and of equal length such that every pair of row vectors in F have a non-zero entry in common; that is, their intersection is not the vector with all zeros. Then all of the row vectors in F have a non-zero entry in common.

Convexity & Consistency

- **Theorem 8.5.5** Let R be a path consistent binary constraint network. If there exists an ordering of the domains of R such that the relations of all constraints are row convex, the network is globally consistent and is therefore minimal.
 - For every set of k variables, arc-consistency forces every row in every $R_{i,k}$ to have a non-zero entry.
 - Path consistency forces all those rows to share some non-zero entry with some other row.
 - Convexity forces all those rows to share the *same* entry or entries.

Theorem 8.5.5 (cont'd)

• All $R_{i,k}$ sharing a non-zero entry means there is some value from D_k consistent with all the relations among all the relations between the k domains. Thus the network is k-consistent. Since $1 \le k \le n$, the network is consistent.

Why is this useful?

- However we end up with path-consistency and row-convex constraints, the result is a consistent network.
- Thus, if enforcing PC creates row-convex constraints (like in Example 8.5.6), we end up with a consistent network.
- If we start with row-convex constraints, and they remain so under extended (2) composition, the result is consistent.
- Examples include linear programming problems in standard form (*not* with inequalities using ≠).
- Note: Remember to condense (0,1) representations when domains get pruned.

Identifying Row-Convex Relations

Theorem 8.5.7 An $m \times n$ (0,1)-matrix with f non-zero entries can be tested for whether a permutation of the columns exists such that the matrix is row-convex in O(m+n+f) steps.

Non-binary Row-Convex Relations

Definition 8.5.9 An r-ary relation R_S , where $S = \{x_1, \ldots, x_r\}$, is row convex if for any subset Z of r - 2 variables $Z \subseteq S$ and for every instantiation, a, of Z, the binary relation $\pi_{(S-Z)}(\sigma_a(R))$ is row convex.

Identifying Row-Convex Relations (cont'd)

- **Theorem 8.5.10** Given a relationally path consistent network, if there exists an ordering of the domains such that the relations are row convex, the network is globally consistent.
- **Theorem 8.5.11** For any network whose closure under extended 2-composition is row convex, RC_2 will generate a globally consistent version of that network.
- **Proposition 8.5.12** A set of linear inequalities that is closed under RC_2 is globally consistent.

Identifying Row-Convex Relations (cont'd)

Theorem 8.5.13 For any network whose directional closure (given ordering d) relative to extended 2-composition is not empty and is also row convex, algorithm DRC_2 computes an equivalent network that is backtrack-free along the ordering.