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Outline

• In the case of row-convex constraints, re-

lational path consistency guarantees global

consistency.

• Thus we should search for row-convexity

where we can.
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Definitions

Functional A binary relation Rij expressed as
a (0,1) matrix is functional if and only if
there is at most a single “1” in any row or
column of Rij.

Monotone Given some ordering of the domain
of values for all variables, a binary relation
Rij expressed as a (0,1) matrix is mono-
tone if the following conditions hold: if
(a, b) ∈ Rij and c ≥ a, then (c, b) ∈ Rij, and
if (a, b) ∈ Rij and c ≤ b, then (a, c) ∈ Rij.

Row Convex A binary relation Rij represented
as a (0,1) matrix is row convex if in each
row (column) all of the ones are consecu-
tive; that is, no two ones within a single
row are separated by a zero in that same
row (column).
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Examples

Functional

Monotone

Row Convex
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(0,1) Representations

Arc-consistency looks like:

Path-consistency looks like:
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Convexity & Intersection

Lemma 8.5.4 Let F be a finite collection of

(0,1)-row vectors that are row convex and

of equal length such that every pair of row

vectors in F have a non-zero entry in com-

mon; that is, their intersection is not the

vector with all zeros. Then all of the row

vectors in F have a non-zero entry in com-

mon.
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Convexity & Consistency

Theorem 8.5.5 Let R be a path consistent

binary constraint network. If there exists

an ordering of the domains of R such that

the relations of all constraints are row con-

vex, the network is globally consistent and

is therefore minimal.

• For every set of k variables, arc-consistency

forces every row in every Ri,k to have a

non-zero entry.

• Path consistency forces all those rows to

share some non-zero entry with some other

row.

• Convexity forces all those rows to share the

same entry or entries.
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Theorem 8.5.5 (cont’d)

• All Ri,k sharing a non-zero entry means
there is some value from Dk consistent with
all the relations among all the relations be-
tween the k domains. Thus the network is
k-consistent. Since 1 ≤ k ≤ n, the network
is consistent.
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Why is this useful?

• However we end up with path-consistency
and row-convex constraints, the result is a
consistent network.

• Thus, if enforcing PC creates row-convex
constraints (like in Example 8.5.6), we end
up with a consistent network.

• If we start with row-convex constraints, and
they remain so under extended (2) compo-
sition, the result is consistent.

• Examples include linear programming prob-
lems in standard form (not with inequali-
ties using 6=).

Note: Remember to condense (0,1) representa-
tions when domains get pruned.
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Identifying Row-Convex Relations

Theorem 8.5.7 An m× n (0,1)-matrix with f

non-zero entries can be tested for whether

a permutation of the columns exists such

that the matrix is row-convex in O(m+n+

f) steps.
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Non-binary Row-Convex Relations

Definition 8.5.9 An r-ary relation RS, where

S = {x1, . . . , xr}, is row convex if for any

subset Z of r − 2 variables Z ⊆ S and for

every instantiation, a, of Z, the binary re-

lation π(S−Z)(σa(R)) is row convex.
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Identifying Row-Convex Relations

(cont’d)

Theorem 8.5.10 Given a relationally path con-

sistent network, if there exists an ordering

of the domains such that the relations are

row convex, the network is globally consis-

tent.

Theorem 8.5.11 For any network whose clo-

sure under extended 2-composition is row

convex, RC2 will generate a globally con-

sistent version of that network.

Proposition 8.5.12 A set of linear inequali-

ties that is closed under RC2 is globally

consistent.
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Identifying Row-Convex Relations

(cont’d)

Theorem 8.5.13 For any network whose di-

rectional closure (given ordering d) relative

to extended 2-composition is not empty

and is also row convex, algorithm DRC2

computes an equivalent network that is back-

track-free along the ordering.
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