Minutes on Hybrids of Search and Inference: Time – Space Tradeoffs

Talker: Jane Yang

Scriber: Chao Chen

Corrector:

Talk 1 on April 23, 2003

1 Motivation

Chapter 10 points out the two effectively orthogonal methods in solving CSP are conditioning/search and inference/derivation. The architectures for hybrids of search and inference utilize the advantages of both methods. That is, inference can generally reduce the size of the problem quickly and conditioning can find a solution of small size problem quickly. The hybrid of inference and conditioning is a more power technique than single method alone. Time and space trade-off is another important issue to be discussed in the chapter.
2. Introduction

Conditioning/search is mainly based on depth-first back-track search. The time required for find a solution is usually exponential. It is a straight-forward method and needs little memory, but with little intelligence.

Inference/deviation reduces the general problem by variable elimination. Both time and space requirement is exponential. The advantage is, when a problem has fewer constraints (the graph is sparse), the complexity is bounded by the induced width of the graph representation.

2.1 Complexity Comparison
Shown in the Detcher’s book Page 275 Figure 10.2

Dr. Choueiry pointed out, in VE (variable elimination), the induce-width is not fixed in usual cases, so it is dishonest to claim that inference can be done in polynomial time by fixing the induces width to a constant.

Dr. Choueiry also emphasized that inference process can not be simply consider as eliminate variable, rather it is a process of knowledge compilation.

2.2 Hybrid Idea
There are two ways to combine inference and conditioning in solving CSPs. Traditional way is sequentially use inference procedures as pre-processing to conditioning. The inference procedure yields a smaller search space. The resulting CSP after inference can then use BT search to solve. It saves the time for searching since the search space is reduced.
An alternative way is to iterate between both methods. We split the original CSP into two sub-problems in such a way that sub-problem A is easy to solve by applying conditioning, sub-problem B is suitable to use inference. We iterate between conditioning on A and inference on B interchangeably and exchange the result of two processes.
In the chapter 10, we mainly examine the methods that use the second alternative.

2. The Cycle Cutset Scheme

The cycle cutset scheme was introduced in chapter 5.3. The main idea is to break the cycles of a graph. Those nodes that lead to a cycle are cycle cutset and will be taken out. For a graph, its cycle cutset can be multiple sets. It depends on how one design the algorithm to discover the cycle cutset. The main advantage of cutting cycles is because a graph without a cycle is a tree. Tree structure has a set of desirable properties for inference. We apply conditioning on cycle-cutset and apply inference on the tree that resulted by taken out cutset nodes.
The process is as follows: After we obtain a cycle-cutset of a CSP, we use BT search to find a solution for cycle-cutset and feed this instantiation to the tree structure. If inference on tree structure concludes that no solution exists, we go back to cycle-cutset, search for another solution. This process continues until we find a solution to satisfy both cutset and tree.

The smaller size of the cycle-cutset is more desirable because the complexity if bound by
[image: image1.wmf])

(

2

=

c

nk

O

 where k is domain size, c is cycle-set size. However, finding minimum cycle-cutset is NP-hard. We need to balance the tradeoff between finding a small cycle-cuset and using searching and tree-solving techniques.

1) Using backtrack search to keep track of the connectivity status of the constraint graph.

2) As soon as the set of the instantiated variable constitute a cycle –cutset, the search algorithm is switched to the tree-solving algorithm.

3) Either finding a consistent extension for the remaining variable to find a solution

4) Or no such extension exists, and backtrack search takes place again and try to find another solution for the cycle-cutset.

There are two extreme cases in cycle –cutset are

1) when the original problem has a tree-constraint graph, which has width one, the cycle-cutset is exactly same as tree-algorithm
2) When the constraint graph is complete, the algorithm is the same as regular backtrack search.

3. Structure-based recursive search

For special cases of constraint graphs-tree graph, we use structure-based recursive search.

This algorithm is specially used on tree graphs. It performs search only and consults the tree-decomposition to reduce its complexity. The steps are: Give a network, we removes node x1(x1 can be any node), we therefore generate two subtrees. We continue this process recursively. Since every time we remove a node and generate two subtrees of approximately size n/2, we have recurrence tree depth logn, where n is the number of nodes in graph. In theorem 10.1.3, it points out that when decomposed tree width w is given, the recursive search can perform linear in space and
[image: image2.wmf])

(

)

1

(log

2

+

n

w

nk

O

in time complexity.

4. Hybrids: Conditioning first

We have seen the conditioning in cycle-cutset, and we know to find cycle-cutset is a NP-hard problem. So a suggestion is proposed to use the framework of hybrid algorithms. We bound the induced-width of the sub problem that solved be inference by variable b. and then search in b-cutset. This method reduces the effort for find the minimal cycle-cutset, instead use an approximation - b-cutset.
The algorithm of b-cutset removes a set if cutset variables, and result the constraint graph with an induced width bounded by b, we call the removed set b-cutset. The original cycle-cutset we mention in the section 2 is 1-cutset.

Finding the b-cutset the steps:

1) Given an ordering we start from the last to the first, if the node x that we are processing has induced-width greater than b, we add it to b-cutset.
2) Else, their earlier neighbors are connected.

3) Continue until all nodes are processed.

The remaining graph after those nodes have been removed has induced-width b. A minimal b-cutset is smallest among all b-cutset.

The elim-cond(b) is introduced. It is the algorithm to process the b-cutset and the remaining graph. First original graph is divided into two sub graphs. One is the cutset variables and remaining variables. We run backtrack search on the cutset and variables and bucket elimination on the remaining variables. We run adaptive consistency algorithm on the remaining set using a valid instantiation from b-cutset until no solution or find a solution for the whole problem.
The constant b can be used to control the balance between search and variable-elimination, and thus affect the tradeoff between time and space. Space complexity of elim-cond(b) is bounded by
[image: image3.wmf]b

n

O

(

) and time is
[image: image4.wmf])

(

b

c

b

n

O

+

 where
[image: image5.wmf]b

c

is the size of b-cutset, and b is the bounding variable.
_1113971553.unknown

_1113973592.unknown

_1113973710.unknown

_1113973523.unknown

_1113200396.unknown

