
Summary of Class Discussion on Directional Consistency (Sections 4.2 and 4.3)

Scribe: Anagh Lal

February 21, 2003

1 Discussion on backtrack-free network

The class discussed the definition of backtrack-free network, which was initially unclear. A BT-free net-
work is that any partial consistent instantiation is guaranteed to be extendible to a complete solution. This
does not mean that any combination of values for variables is a solution. So, the problem may still have
no-goods (i.e., combinations of values to variables that are not solutions). A BT-free network is said to be
consistent in the sense that it is guaranteed to have a solution.

2 Section 4.2: Graph concepts

1. The following concepts were introduced and discussed: an ordering (d), the width of a node, the
width of an ordering and the width of a graph. Examples were reviewed. As a reminder:

• The width of a node in an ordering is the number of its parents in the ordering.

• The width of an ordering is the maximum of the widths of its nodes.

• The width of graph is the minimum of the widths of all its orderings.

• To find the width of a graph it is not feasible to list out all orderings (there is a factorial number
of them).

• Fortunately, a greedy algorithm to find the width of a graph and the corresponding exists, the
Minimum Width algorithm (MW). It is shown in Figure 4.2, page 96 of [1] along with an
example and it was discussed in CSCE 421/821 (see instructor notes #9).

Dechter adopts the convention of drawing an ordering in the reverse order of the search: the last
node to be instantiated is listed on top.

2.1 Induced width and induced graph

(a) The induced width of a graph under ordering d is the width of its induced graph.

(b) The induced graph of an ordering d is obtained by moralizing the original graph. The term
moralizing the graph was revisited, as it was introduced CSCE 421-821.

Given an ordering d, the induced width of the ordering and the corresponding induced graph
can be found as follows. The original graph is processed from last node to first node in the
ordering. For every node, the parents of the node are moralized, that is connected.

(c) The induced width of a graph is the minimal induced width over all its orderings.

(d) Finding the minimum induced width of a graph is NP-hard however, a linear-time approxima-
tion exists: the Minimum Induced Width (MIW) algorithm, Fig. 43 page 97 of [1].

1

(e) The MIW algorithm is a modification of the min-width (MW) algorithm and works as fol-
lows. From the input graph the algorithm selects a node with the minimum degree and places
it last in the ordering. The neighbors of the node are connected, after which the node and
the edges adjacent to it are removed from the graph. The node with the minimum degree in
the resulting graph is then selected, and this process is applied recursively till all the nodes
have been processed and placed in the ordering list. Ties (i.e., two or more nodes having the
same degree) are broken arbitrarily. The width of this ordering gives an approximation of the
minimum-induced-width of the graph.

(f) Eric Moss reinforced the objective of studying the width and induced width as being to find
graphs with special topologies that lend themselves to quick solutions.

2.2 Chordal graphs

(a) Many difficult graph problems (e.g., like finding maximal cliques) become easy on chordal
graphs. Chordal graphs are a sub-class of perfect graphs. Finding max-cliques is NP-hard in
general, but for chordal graphs, it can be done in linear time.

(b) It was noted that finding max-cliques was not approximable, i.e. there is no polynomial-time
algorithm that can find max-cliques within a given threshold, for all possible thresholds.

(c) The Maximal-Cardinality Ordering algorithm of Fig 4.4 on page 98 on [1] is

(d) In chordal graphs, maximal cliques can be found with the algorithm Maximal-Cardinality
(MC) Ordering given in Fig 4.4, page 98 of [1].

(e) MC is in fact the algorithm one uses to recognize chordal graphs. A graph is chordal iff in
the max-cardinality ordering graph each vertex forms a clique with its parents. Eric Moss
discussed an algorithm for making a graph chordal (which does not guarantee the minimum
number of added edges).

(f) We can enumerate all max-cliques associated with each vertex by listing the sets of each vertex
and its parents, and then identifying the maximal size of a clique.

(g) Note that, for a chordal graph, MIW generates the same graph as MC.

2.2.1 K-trees

Dechter mentions that a graph can be embedded in a k-tree iff it has an induced width w
∗ ≤ k. This

triggered an investigation of what is a k-tree. We try below to answer this question.

A k-tree can be defined inductively in the following way:

(a) A k-vertex complete graph is a k-tree.

(b) The graph obtained from a k-tree by adding a vertex adjacent to each vertex of a k-clique is
also a k-tree.

We had hard time to parse this compact, but correct, definition. Consider the graph shown in Fig-
ure 1a. It is a four vertex complete graph, hence a 4-tree. Going by the definition, to add a vertex
V5 to the graph and keep the graph a 4-tree, we need to connect V5 to 4 vertices that form a clique
of size 4 (since, here, k = 4). These vertices are V1, V2, V3 and V4. The vertices {V1, V2, V3,
V4, V5} form the max-clique of the graph and the size is 5, which is equal to (k + 1). The vertices
{V5, V4, V3, V2} form a clique of size 4 in the new graph, as shown in Figure 1b. Addition of a

2

new variable V6 to the graph of Figure 1b is shown in Figure 1c. Here, the variable V6 is connected
to V5, V4, V3 and V2 (which form a clique of size 4), the new resulting clique is of size 5. The
maximal clique size in this final graph is also 5, which is equal to (k + 1).

V1

V3V4

V2V1

V3V4

V5

V2

(a)
4−vertex complete graph

(b)
A vertex V5 added and connected to 4 vertices which form a clique

(c)
A vertex V6 added and connected to 4 vertices, graph is still a 4−tree.

V5

V7
V6V6

V2V1

V3V4

V2V1

V3

V5

V4

(d)
Adding another node.

Figure 1: Various stages of a k-tree (a) A k-tree initially having 4 vertices (b),(c) and (d) show addition of new
vertices so that the graph remains a k-tree. Here k = 4.

Such a graph is called a k tree for the following reason. Each maximal cliques (which have size
(k + 1)) can be grouped under a single node (representing (k + 1) of the original vertices). These
new nodes can be arranged in a tree structure in which the neighbors (i.e., parent and children) of
each node share exactly k of the original vertices with the node. In Figure 2 we show the k-tree
corresponding to the example of Figure 1d.

V1,V2,V3,V4,V5

V1,V2,V3,V4,V7V2,V3,V4,V5,V6

Figure 2: Tree decomposition of Figure 1d.

3 Section 4.33: Directional consistency

Next, Eric introduced Directional Arc-Consistency (DAC), Directional Path-Consistency (DPC), and Di-
rectional i-Consistency (DIC).

3.1 Directional arc consistency

1. Directional Arc-Consistency (DAC) ensures that in a given ordering, you can pick a value from any
variable and know that it has support from variables that come later in the ordering. Hence, while
enforcing this property, we start from the last variable Vi in the ordering and we update the domains
(or higher order relations) of the variables earlier in the search ordering (Vj<i) to keep only those
values (or tuples) that are supported by Vi.

2. Directional Arc-Consistency does not guarantee BT-free search but is a cheaper alternative to arc-
consistency as we revise, for every variable, the domains of only those variables that appear earlier
in the search order and not those that appear later.

3

3. The algorithm for enforcing DAC is given in Figure 4.6, page 101 of [1]. It updates the domain of
variables.

3.2 Directional path-consistency

1. The concept of constraint composition was revisited and its relevance to path-consistency was ex-
plained. Let V1, V2, V3 be three variables, and let R12 and R23 be the two constraints defined on
these variables. We can see that there is one common variable, V2, between the two constraints. The
two constraint restricts the values the variables V1 and V3 can take at the same time, even though
they do not have an explicit constraint between them. Based on the restrictions imposed by the
constraints R12 and R23, we can impose a new, induced constraint R13. The constraint R13 can be
found by first, listing the values the common variable V2 can take and be consistent with the two
constraints.

2. The algorithm for Directional Path-Consistency (DPC) maintains a list of edges to be visited for con-
straint propagation. It adds these edges to the constraint graph. The algorithm for Path-Consistency
(PC-1) would visit every combination of the three nodes, whereas in DPC fewer combinations are
visited: for a given variable we only consider those that appear earlier in the search ordering.

3. The DPC algorithm of Figure 4.6 results in a strongly directional path-consistent graph, i.e. it also
makes the graph directional arc-consistent.

4. DPC results in a moralized graph, which has the min-induced-width w
∗. Importantly, while MIW

changes the topology of the graph, DPC also tightens the binary constraints, which label the old and
new edges.

5. Eric Moss suggested a possible optimization to the DPC algorithm. If we know that there is only one
parent for every node and that the given network is arc-consistent then the arc-consistency portion
of the DPC algorithm can be skipped.

6. Typo: The Figure 4.8, page 104, of [1] caused confusion by not having the reference to the Revise-
3() function properly commented.

3.3 Directional i-consistency

1. The algorithm for directional i-consistency uses a generalized version of the Revise algorithm.
The generic algorithm takes, as a its first parameter, a set of any size. The algorithm for directional
i-consistency picks up variables in the reverse order of the ordering d. For each variable it finds the
set of parent variables. If the set of parents has exactly (i − 1) elements, then the algorithm induces
just one new constraint of arity (i − 1) over the set of parents. Otherwise, if the set of parents has
more that (i− 1) elements, then a constraint is recorded over every combination of (i− 1) subset of
variables in this set.

2. If we have a CSP with constraint arities ≤ i, then applying the directional i-consistency algorithm
produces a graph that is subsumed by (or is a part of) the induced graph for the same ordering d.

4 Overall objective of the sections

In the sections ahead we will study that if an ordered constraint graph (ordering d) has width (w − 1)
and if it is strong directional i-consistent then the constraint graph is BT-free for the ordering d. Thus

4

by studying the concepts of directional consistency we are able to exploit the structural properties of a
constraint network to obtain solutions within a polynomially bounded amount of effort.

References

[1] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2002.

5

