CSCE 976 Class minutes

Scribe: Shabbir a. Syed

02-27-02

Material discussed:

Planning graph as a dynamic CSP: Exploiting EBL, DDB and other CSP search techniques in Graphplan, Subbarao Kambhampati.

Introduction:

A variety of CSP search techniques are discussed to improve Graphplan backward search including Explanation based learning (EBL) and Dependency directed backtracking capabilities (DDB), dynamic variable ordering, forward checking, sticky values, and random restart search strategies.

Advantages:

· Adding full fledged EBL and DDB capabilities in effect gives Graphplan both the ability to do intelligent backtracking, and the ability to learn generalized Memos that are more likely to be applicable to other situations.

· Empirically the EBL/DDB techniques improve Graphplan search efficiency by 1000x speedups.

· An improved version of Memoization is introduced rather than the weak form of failure driven learning used by regular Graphplan.

· Sticky values are implemented over EBL/DDB and this improves 2 to 4x improvement over EBL alone.

· Also this technique achieves higher solvability rates, and more optimal plans with significantly smaller backtrack and restart limits.

Graphplan’s backward search as a DCSP:

Backward search is where a planning graph is searched to extract a valid plan. A Graphplan is converted to a DCSP and which is further converted to an ‘extensional’ CSP. Only the propositions corresponding to the goals of the problem are ‘active’ in the beginning. There are three types of constraints

· Action mutex constraints: They have to be modeled indirectly as constraints between propositions.

· Fact (proposition) mutex constraints: They are modeled as constraints that prohibit the simultaneous activation of the two facts.

· Subgoal activation constraints: They are implicitly specified by action preconditions, supporting an active proposition p with an action a makes all the propositions in the previous level corresponding to the preconditions of a active.

Solving A DCSP:

1. Direct approach: starting the initially active variables and finding a satisfying assignment for them

2. To first compile it to an extensional CSP and use standard the algorithms.

Note: It is possible to compile a CSP problem to a prepositional satisfiability problem

Graphplan constructs its planning graph by:

· Partial directed 1 consistency: An action is introduced at level l only if the actions preconditions are present in the proposition list at level l-1 and are not mutexes.

· Partial directed 2 consistency: It is ensured by mutual exclusion propagation procedure.

Points worth noting:

1. This technique eliminates drawbacks of backtracking by employing EBL/DDB. Improved version of Memoization and Regression-going back to assigning actions to goals.

2. A stored memo is a subset of the goal set at level k, which is sufficient to declare that the goal set is a failure.

3. Koehler and her team has developed a data structure called UB-Trees for storing Memos-it can be seen as a specialization of the set enumeration trees and they can efficiently check if any subset of the current goal set has been stored as a memo.

4. EBL/DDB are sound and completeness preserving-follows from the corresponding properties of conflict directed backjumping.

5. There is significant reduction in runtime.. to the extent of 40x. Although the implementations spend different time garbage collecting – depends on the domain.

6. Larger dependencies between goals in a level increase memo length. But this reduces memo length. From table 2 it is observed that avg. length reduces dramatically in rocket world and logistics while it is less in blocks world.

7. Utility of stored memos increases with EBL/DDB+Graphplan.

8. A significant fraction of run-time with EBL is spent in memo checking; but overall.. both techniques have a net positive effect.

9. Disabling memo checking gives worsened performance…for reference see.. (pg 17, 5.5).

10. Even with EBL/DDB capabilities larger benchmark problems like bw-large-c and att-log-b could not be solved…at the same time no implementation of Graphplan has succeeded in solving this.

11. Generation and reuse of memos across Epoch levels is done effectively.

12. Graphplan remembers only l*2n/l memos as compared to (d+2)n no-goods.. in an EBL implementation for CSP.. with P propositions.. over n levels.. each supported by d actions.

13. Remembering the current value of a variable while skipping over it in DDB.. helps when backtracked to the variable. This is called sticky values.

14. Random restart is implemented over systematic search.. also it is implemented over Graphplan.

15. All the experiments were conducted with a given limit on backtracks, restarts, and the number of levels.

16. With the increase in the number of levels, backtracks and restarts, probability of finding a solution increases also the average length of solution found increases and the cpu time spent is increased too.

Conclusion:

· With EBL/DDB Graphplan is able to pinpoint the cause of the failure more accurately.

· Graphplan with EBL/DDB is able to generate and reuse memos more effectively.

· For Graphplan, which uses DCSP model of search, DVO and FC are largely ineffective compared to EBL/DDB.

· Even when one is using state space instead of csp style solution extraction, EBL can still be useful as a lazy demand driven approach for discovering n-ary mutexes that can improve the informedness of the heuristic.

Future work: To remove redundancy, as the search Graphplan does on planning graph of size l is same as on l-1.

Students comments:

· If two goals are mutexes then both cannot be active at the same time.. but they can both be inactive….[4]

· In their search they don’t consider a non binary constraint.. (referring to pg 6 To avoid…..value)……[1]

· Goals will be active only when corresponding actions will be taken into consideration………[6]

· We cannot prevent a goal to be non nil if its corresponding actions is not taken because some other action might make the goal active…..[6]

· Backtrack and change the unneceassary goal to inactive by adding a constraint to it……………………[3]

· What kind of constraints do we need to have to prevent more than the goals that are needed to be active……[3]

· Unless an action –which requires unnecessary goals, as a precondition, we don’t active it………………[3]

· Referring to pg 15.. Nromal graphplan didn’t terminate but DDL+graphplan did terminate…………because planning people realize on benchmark problems and a standard language for these problems…..[7]

· Referring to pg 13.. pointed out the importance of UB trees as a data structure….[2]

· Is forward checking and back jumping complete……..yes……[5]

· Size of logistic problem is real world or not.. yes……………...[5]

· EBL/DDB backtracks less before it restarts.. why doesn’t it use backtrack and forward checking….pg 28 last line…………..[3]

· The effectiveness of chronological backtracking is questionable…… [3]

· Garbage collection time is not included in normal graphplan……[4]

· Not comfortable with the conventions used………………………..[6]

· It would be interesting to solve as CSP instead of DCSP…………..[1]

· Pim has a value other than (then it is ‘no-good’……………………[3]

· Partial directed 2 consistency is doing propagation and mutex…….[4]

· Discussed about subset memoization……………………………….[5]

· Explained sticky values……………………………………………[4]

· Can we solve CSP using graphplan……if both are NP-c then yes……..[2]

· Commented that there are activation levels between constraints……….[6]

· Maping from DCSP to CSP the cost is not included……………………[1]

· Mutex constraints are not addressed…..all constraints, conceptually are type of mutex…………………………………………………………………….[1]

· Referring to pg 8…the complexity should be O(l*m2*d2)………………[4]

· Suggest to separate the procedure of backtracking or write a new backtrack procedure for every problem we solve……………………………………[1]

· No good across random restarts.. this may be biased…………………….[3]

(1) Amy Davis

(2) Cory Lueninghoener

(3) Dan Buettner

(4) Robert Glaubius

(5) Tibor Moldovan

(6) Praveen Guddeti

(7) Xu Lin.

