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1 Introduction

In Monday'’s lecture, we covered material from the first chapter of [2], entitled “Intelligent Agents” and
authored by Michael Wooldridge. This chapter covers the basis of agent architecture, with a look at several
different concrete architectures, and some programming languages that focus on the use of agents.

This material was presented by Tibor Moldovan and Shabbir Syed. Tibor covered the first portion of
the chapter, which included an introduction to agents, the general architecture of agents, as well as the
first concrete architecture. Shabbir covered the latter three architectures, as well as the agent programming
languages.

2 Tibor's Lecture

2.1 Whatis an Agent?

Tibor began his portion of the lecture by discussing the attributes of an‘agéatreviewed that an agent
is a computer system situated in an environment that is capable of autonomous action in order to meet its
design objectives. Usually an agent has some set of sensors that enables it to perceive its environment
Some classical examples of agents are thermostats, cruise control, and software daemons.

There are five different properties used to describe an agent’'s environment; these directly effect the
complexity of tasks performed by an agent. These properties are as follows, with explanations drawn from
[2], pgs. 30-31.

Accessible vs. Inaccessible:The accessibility of an environment is the degree to which it has access to
the current environment state. An accessible environment implies an omnipotent agent.

Deterministic vs. Non-deterministic: In a deterministic environment, each action leads to exactly one
consequent state. Non-determinism indicates that an action may result in one state out of some set
of possible outcomes.

Episodic vs. Non-episodic: In an episodic environment, agent performance is dependent upon a number
of discrete episodes, while in a non-episodic environment, performance is dependent upon the sum
of previous experience.

tUnfortunately, Tibor neglected to elucidate Hugo Weaving’s relation to the agent framework, so perhaps viewing “The
Matrix” as a class will be necessary to fully comprehend this point.

2It is important to mention at this point that this definition is controversial, and that many definitions of agency exist in the
literature



Static vs. Dynamic: A static environment is one in which the only changes in environment state are due
to the agent’s actions. In a dynamic environment, there may be many other factors that alter the
environment state.

Discrete vs. Continuous: An environment is discrete if there is a limit to the number of possible actions
and precepts, while in a continuous environment no such limit exists.

More information on these properties can be obtained from [1]. Tibor noted that the most complex
environment is inaccessible, non-deterministic, non-episodic, dynamic, and continuous. In other words,
an environment that has the properties of the natural environment.

The next feature of agents that we discussed after environment was autonomy. Autonomy implies
that the agent is in charge of what action it will perform. This is distinct from the idea of a software
object, which has methods that outside agencies can use to control the object. The catch-phrase used
to characterize the relationship between objects and agents ©®lifetts do it for free, agents do it for
money Another point mentioned by Tibor was the issue of control; agents have their own thread of control,
while objects do not.

The discussion of agents at this point led into the topic of intelligent agents. The distinction between
an agent that is intelligent and one that is not is that an intelligent agent is capable of flexible behavior.
Flexibility is defined as reactivity, pro-activeness, and social ability. Reactivity is the ability to perceive
and respond in a timely fashion, pro-activeness indicates the ability to take the initiative in pursuit of goals,
and social ability is the ability to interact and communicate. The idea of social ability is especially relevant
in the domain of multiagent systems.

2.2 Abstract Architectures for Intelligent Agents

The next topic in Tibor’s lecture was the abstract design of intelligent agents. The design of an intelligent
agent involves the definition of the environment as a%et {si, s2,...} of all possible environment
states, the effectoric capacity of the agent as thelset{a;, as, ...} of actions, and views the agent as a
functionS* — A, which maps sequences of environment states to actions.

The interaction of an agent with its environment can be represented as a historyisidrg is a
sequence of environment states with transitions annotated by the action that caused the transition, as shown
below.
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We are generally interested in agents whose interaction with the environment does not end; therefore
their histories will be infinite.

Based on the use of histories, we can categorize intelligent agents into two abstract classes. These are
purely reactive agents, and agents that maintain a state. The purely reactiveisigeet whose action
function maps a single environment state to an action, as shown in Equation 1. This implies that the agent
is reasoning only from the current environment state. Dr. Choueiry noted that an alternative function
would beS x h — A, which maps a state and history to an action.

Action : S — A ()

Alternatively, an agent with state maintains an internal state that maintains history and environment
information. The set of these internal states is dendtedn example agent of this type could use the
functionSee : S — P to map environment states to percepts. Based on this function, we can then define a
transition function nextVext : I x P — I that maps an internal state and percept to an internal state. This

3This type of agent is calledsimple reflex agerin [1].



is then used to define the action functidation : I — A, mapping the internal state to an action. This
concept of an internal state will allow this type of agent to perform a superset of the tasks that a purely
reactive agent can perform.

2.3 Concrete Architectures, Part |

Tibor then moved on to the next portion of the paper, discussing the first concrete architecture reviewed in
[3]. This is the logic-based agent.

A logic-based agent is an agent that relies on the rules of first-order logic to represent the environment
and decide on actions. Percepts are represented as true or false statements in the set of environment
statesS. Let L is the set of all FOL sentences, aftlis the power set of, then internal state of a
logic-based agent is an element Bf A logic-based agent makes decisions using a set of deduction
rules. In a sample logic-based agent, we could have the fungstien: S — P as before, and the
function Next : D x P — D that maps a database and a precept to a new database. The action rule
Action : D — A then maps a database to an action.

Tibor describes reasoning in a logic-based agent is as follows. agent tries to find an action that satisfies
some desired internal state (e.g. its goal state). If such an action exists, that action is taken and evaluated
asTRUE Otherwise, the agent tries to find some action that is consistent with the goal state. If such an
action exists, it is taken, otherwise a no-op is performed, as no action will achieve the desired state. The
agent’s performance is based on its deduction rules and its current database.

The advantages of logic-based agency are primarily due to the elegance of formal logic. Further, as
long as the environment doesn’t change, and FOL inference is carried out correctly, the agent will find an
optimal action if one exists. The problem is that logical inference is a hard problem; therefore it is difficult
to guarantee that the environment will remain stable while reasoning is carried out. This property is called
Calculative rationality

The primary disadvantages of logic-based agency are threefold. First, it is difficult to map percepts
into logic statements. The next is the difficulty in representation of dynamic environments. Temporal
reasoning tends to be slow, which leads to cases in which the optimal decision is obsolete before it is even
discovered. Finally, procedural knowledge is not necessarily intuitive once represented in logic.

3 Shabbir's Lecture

3.1 Concrete Architectures, Part Il

Shabbir’s portion of the lecture moved on from Logic-based agents to the next architecture described in the
paper. This was the reactive architecture, as exemplified by Rodney Brooks’s Subsumption architecture.

This architecture doesn’t use an intermediate representation for describing environment states, but in-
stead maps directly between percept and action. The subsumption architecture is named for its mechanism
for prioritizing actions. A given environment state can cause several actions to “fire”, e.g. be selected for
execution. Active actions subsume each other, as the action with highest priority is executed. To facilitate
this, the possible behaviors must be totally ordered. The subsumption architecture is suggested by the
emergent behavior paradigm. This is the idea that the interaction between a set of simple behaviors can
achieve complex results.

Shabbir discussed the application of the subsumption architecture given in the paper. This is the
example of the rock collecting agent problem in the paper. This example demonstrates the importance of
proper ordering for the behaviors, as well as providing a good example of how complex interaction can
arise from simple behavior.



In summary, we have a number of agents that are required to find and collect clustered samples of
some rock. The landscape renders the agents incapable of direct communication. We are also given a base
that emits a signal that degrades with distance. Each agent has several behaviors to choose from, including
the following.

1.6 If an obstacle is detected then change direction.

1.7 If carrying samples and at base then drop samples.

1.8 If carrying samples and not at base then travel up signal gradient.
1.9 If asample is detected then collect sample

1.10 If TRUEthen move randomly

These behaviors are ordergd6) < (1.7) < (1.8) < (1.9) < (1.10), where we would choose the
leftmost of all firing behaviors. These behaviors will enable the agents to collect samples, but won't offer
much in the way of cooperation. For this reason, we add the following behaviors.

1.12 If carrying samples and not at base then drop 2 crumbs and travel up gradient.

1.13 If crumbs detected then pick up 1 crumb and travel down gradient.

Given these behavidts we modify the ordering t¢1.6) < (1.7) < (1.12) < (1.9) < (1.13) <
(1.10). Also notice that now the agents will establish a form of indirect communication. Once a sample
cluster is found, a trail from it to the base will be created. Other agents will find this trail and commence
collection of the same cluster; until the cluster is exhausted, the trail will be strengthened. Once the cluster
is exhausted, radioactive decay (as noted by Dan) and wandering agents will weaken the trail. As Dr.
Choueiry noted, this is inspired by the apparent behavior of ant colonies.

The advantages of the subsumption architecture are its simplicity and tractability. Another strength is
its robustness; the removal of a single agent doesn’t substantially detract from the completion of the task.
Its disadvantages are that decision making is local, and its unclear how to include global knowledge into
the computation. Another weakness is the absence of learning from experience. A final difficulty is that
it is not necessarily intuitive to judge how a set of simple behaviors and environment will interact, and
design is frequently based on trial and error.

Next, Shabbir moved on to describe the Belief-Desire-Intention (BDI) architecture. These architec-
tures are based in the philosophical tradition of understanding practical reasoning. It focuses on deliber-
ation about intentions, e.g. what goals do we wish to achieve. It employs means-end reasoning, in other
words, given the conditions, how are we going to achieve these goals. Dr. Choueiry enforced how this
is can be represented as a series of if-then-else rules, and explained that the foundation of means-end
reasoning in computer science stems from work by McCarthy and Newell during the 1960’s.

An important aspect of BDI architectures is the role of intentions. Intentions serve four important
roles. The drive means-end reasoning and constrain future deliberation by focusing on a goal set. They
persist through time until they are accomplished or become impractical, and influence beliefs that direct
future practical reasoning.

BDI architectures must make a tradeoff between the degree of commitment and reconsideration. The
extremes are bold and cautious agents, where a bold agent is one that makes strong commitments and
rarely reconsiders, while the converse is true of a cautious agent; lheta parameter that characterizes

4Scribe’s note: behavior 1.11 omitted, as it is the same as behavior 1.7.



the rate of change of the world. 4fis low, indicating that the world changes slowly, then bold agents will
outperform cautious agents.4fis high, then cautious agents will outperform bold agents.

There was some contention about this; Dan wondered if the bold agent wouldn't still outperform the
cautious agent whenpwas high simply because the cautious agent would never actually do anything while
the bold did. Praveen explained that, since the bold agent may commit to acts that are detrimental in the
current environment state.

The BDI architecture requires that the following functions are defitgdions : p(Bel)*xp(Int) —
p(Des) maps beliefs and intentions to desiréslter : p(Bel)* x p(Int) x xp(Des) — p(Int) filters
out intentions that aren’t compatible with the beliefs and desires of the agentcute : p(Int) — A
maps intentions to actions. Using these, we can then define the agent decision fungtion P — A.

This function set$3 to be the set of beliefs consistent with the current percepts, thewdetbe the result
of the Options function givenB. [ is then set to be the result éfilter given B, D, and the old set of
intentions!. We then calkzecute(I).

After the discussion of BDI architectures, Shabbir went on to discuss layered architectures. These ar-
chitectures utilize several different agents and architectures to respond to different situations. Two layering
strategies were discussed - the horizontal and vertical layerings. We discussed an example of each; these
are the Touring machine, which uses a horizontal layering, and InteRRap, which uses a two pass vertical
layering strategy.

In a horizontal layering strategy, percepts are passed directly to several layers. Each layer is a distinct
agent architecture, and recommends an action. A control subsystem then chooses one of these actions to
execute. The primary issue in such an agent then is determining which layer has control of a particular
decision.

In a vertical layering strategy, there are two potential control strategies. These are the one and two
pass control strategies. In a one pass control strategy, percepts and information travel upwards through
the layers. In the two pass control strategy, information travels upwards until it reaches a layer that is
competent to recommend an action. This layer can then delegate subtasks downwards to lower agents
until an action decision is made.

The Innes Ferguson’s Touring machine is an example of a horizontal layering system. Itis comprised of
three layers; a reactive layer, a planning layer, and a modeling layer. The reactive layer essentially behaves
like a purely reactive agent as discussed earlier, and offers immediate response to an input percept. The
planning layer employs a set of skeletal plans to derive courses of action. The modeling layer represents
entities in the world, and predicts conflict between agents and generates goals to resolve these conflicts.
The Touring machine employs a mechanism for control that inhibits the passing of percepts to agents that
are known incompetent in dealing with such input.

The InteRRap system, designed by Joerg Mueller employs a two pass vertical layering. It uses three
layers, a behavior layer, a plan layer, and a cooperation layer. These are analogous to the reactive, planning,
and modeling layers from the discussion of Touring machines. A world interface sends information first to
the behavior layer, which has access to a world model. The behavior layer can pass information upwards
to the planning layer, which has access to a database of planning knowledge. This layer in turn can
communicate upwards with the cooperation layer, which has a KB of social knowledge. Each layer in the
InteRRap system has several properties. The first is situation recognition, which maps a KB and current
goals to a new set of goals. Goal activation selects a plan to execute based on the current plans, goals, and
KB.

The primary differences between the Touring Machine and InteRRap (aside from the layering system)
are as follows. InteRRap uses a series of knowledge bases, while the Touring machine does not. In the
Touring machine, layers are able to directly receive input and generate output, necessitating the use of a
control layer. InteRRap relies on interaction between the layers to govern the system.

Layered architectures are more common, since the layering allows for decomposition of functionality.



Simply put, we can use a layer that specializes in certain tasks to handle a subset of the tasks required
of the layered agent. Layered architectures do lack the conceptual and semantic clarity of the unlayered
architectures.

3.2 Agent Programming Languages

We then went on to briefly discuss the agent programming languages mentioned in the paper. These were
Agent0 and Concurrent METATEM. AgentO is a prototype language developed by Yoav Shoham in 1990,
and embodies agent-oriented programming. Concurrent METATEM is a more practical language that uses
logic formulae, and was developed by Michael Fisher in 1994.

The components of AgentO are primitives for expressing the high-level concepts necessary for de-
scribing agents. These are mechanisms for specifying a set of initial capabilities, beliefs, intentions, and
commitment rules. A commitment rule has a message condition, a mental condition, and an action. Such
a rule fires when the message condition matches against messages the agent has received and the mental
condition matches against the agent’s beliefs. This causes the action specified by the rule to fire. These
actions may be private or communicative to other agents. Dr. Choueiry noted that this extends rule-based
systems to include a notion of belief and intention.

Concurrent METATEM specifies agents using temporal logic. This specification can be executed di-
rectly in order to generate the agent’s behavior. A conjunctioR; 6% F; rules are used to match against
an internal history; if a match is found, the rule fires. When a rule fires, the commitment is updated to
include the consequent of the rule. METATEM is concurrent in that agents communicate asynchronously.

Shabbir then concluded with a summary of the discussion, in which we mentioned in the paper. These
were Agent0 and Concurrent METATEM covered the definition of an agent, and the importance of agents.
The goal of this research area is the theory, design, construction and implementation of intelligent agents.

4 Questions

Amy e wondered what the agent-based languages were being used for. Tibor responded that they were

- useful for providing predefined primitives. Shabbir also noted that some systems have been
implemented using these languages. Choueiry added that the focus of the paper was not on
application, as well as reaffirming Tibor’s point that the languages also provide communication
protocols for inter-agent communication.

¢ Noted that a good job was done of integrating examples of real systems into the paper
e Also mentioned in her comments that abstraction of state information to reduce the number of
potential states is a useful area. She notes that this would lose information, however.
Cory e “Ah, yes, | remember agents from 476"

e Mentioned that there are similarities between the idea of agents and a task Cory, Dan, and
Brian had performed at the ACM contest.

¢ Notes that it would take a large number of threads for a good implementation of a system that
requires many agents.
Praveen e Points out that the line “Objects do it for free, agents do it for money” explains the differ-
ence between agents and objects beautifully.

e Wondered what it means when we compile the logical specification of an égmiiie’s reply:
If I remember correctly, this would be regarding InteRRap, which uses a logical syntax. We



could therefore compile our agent in roughly the same sense that we compile a block of code
in any other non-interpreted language.

item [Lin Xu]

e Points out that this chapter is a deeper discussion of the same basic ideas from [1]. Some of
the definitions are different, however, such as that of 'agent with state’.

e Asks that, since the logic-based approach is at a disadvantage for representing the real world,
which approach does this betteBeribe’s reply: | suppose that the most natural answer is to
point out that reactive agents avoid this problem by ignoring an intermediate representation
altogether. If your input is an image of the real world, then we map an action from the pixels.
The problem here is that it is often difficult to determine the pattern of reasoning that leads to
a decision for sufficiently complex input.

Dan e He wonders why anyone would confuse objects and agents in the first place. It seems that the
section that tackles this issue is largely irrelevant and could be abbreviated g&ailye’s
reply: Since | tend to agree with this point, there’s not much | can say. | suppose it's an artifact
of the focus on object-oriented paradigm that some of the features of agents are comparable to
some of the high-level aspects of objects.

¢ Extolls the virtues of the 'robots exploring a foreign body with communication’ example.

e Expresses the sentiment that the agent-based programming languages look “awful”. Believes
that a good class hierarchy should suffice in place of such tools.
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