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 This thesis  investigates the dynamic detection of  symmetry relations in  combinatorial problems modeled as constraint satisfaction problems (CSPs) and examines how to exploit these symmetries in order to generate a compact  representation of the solution space and overcome the complexity barrier that  undermines the efficient solving of these problems. 

The combination of these techniques is assessed with the best known strategies for  improving the performance of search such as dynamic ordering heuristics and full  lookahead strategies.  It is demonstrated that the benefits drawn from our approach are  orthogonal to, and benefit from, such combinations. 

 Improvements are thoroughly validated through both theoretical and empirical  means.  The experiments show the utility of dynamic symmetry detection on a full  range of problems (i.e., from easy to difficult, for toy, real-world, and randomly  generated problems).  It is demonstrated that these techniques are useful when finding  one and all solutions, under static and dynamic ordering heuristics, and using partial  and full lookahead strategies.  In doing so,the common notions that the  dynamic computation of symmetry is too costly to be of practical utility is dispelled.

· Bundling technique comes up with more solutuions, like 5 million solutions at one time and at lesser cost.

· Improvement in performance search by establishing superiority and effectiveness of approach.

· Effective improvements:

· Lookahead filtering

· Dynamic variable-value ordering.

Variable value ordering:  find the most promising value first.

Variable ordering: pick value which most likely fails and find value for it.

Static ordering: one search order continues.

Dynamic ordering: value of variable changes and find next variable.

Symmetry: solver discovers the symmetries, called interchangeability.

Two values in a variable are interchangeable if:


They behave the same globally


Locally

Interchangeable values are redundant and can be placed in a bundle and treated as a single value.

· Global interchangeability is np-hard.

· Local is tractable.

NPI(neighbourhood partial interchangeability): Varies the number of constraints and finds interchangeability in them.

NIC(Neighbourhood interchangeability):

1. computes all locally  interchangeable values for all variables.

2. store these interchangeable values.

3. perform search, substituting each set of interchangeable values with one representative.

4. compact the search space.

5. perform a faster search.

6. produce bundles of similar solutions.

DNPI(Dynamic neighbourhood partial interchangeability)

· not expensive than forward checking.

· Not expensive than static interchangeability.

· Guaranteed to produce larger solution bundles static interchangeabilty.

It is also established that the dynamic detection and exploitation of symmetries is a  powerful, cost-effective tool for dramatically reducing the peak of the phase transition,  possibly the most critical phenomenon challenging the efficient processing of  combinatorial problems in practice. 

Although most of the work focuses on binary CSPs, it is shown how it can be extended  to non-binary problems.  

Results: DNPI is cost effective i.e visits less nodes and does more constraint checks than FC.


Works very well with dynamic variable ordering- DNPI+DLD is best combination.


Remains superior in more difficult situations.


Better with FC than with MAC-(MAC is an overkill , not useful).

Future work:


Applications in relational database.


AI planning


Human computer interaction.


Functional interchangeability


Continuous CSP


Relationship to backbone and SAT.


Random generators


Phase transition in non binary CSP


Non binary CSP solver improvements

Students comments:

Tibor: any studies as to how it compares to FC-CBJ which blows FC out of the water on both accounts.

Amy: Indeed, it has beaten FC  on all counts, as you state.  Our method iscompletely independent of CBJ, and so, and thus would (I expect) similarly improve the performance of FC-DBJ.  To be sure, it would have to be implemented, and tests made.  Fc-DBJ is more costly in terms of  space than FC, but I don't think that would be an issue until problems  got quite large.

Tibor: what is backbone.

 Amy: A backbon is the subset of variables that have the same values in all solutions to the problem.  

The idea is that to generalize the backbone from one value per variable to a bundle of values per variable, thus providing a stronger  characterization.

Tibor: Interchangeability seems to lend itself very well to distributed/parallel computation, since there doesn't seem to be much data dependence once the sets are made. i think such computation would allow us to solve problems with huge depth and branching factor on machines such as prarie fire.

Dr. chouiery: Parallelizing large search is a relatively old topic in AI.  The novelty with interchangeability is to find some `good' conjunctive decomposition of the CSP.  I have identified some good conditions for decomposition and Amy is aware of them, however I don't see how the current work impacts this. Xu Lin is working on something in this direction.

Dan: slide 3- it should be, Can we assign a value to each variable such that all constraints are satisfied? Slide 7- slide title should mention that the search space is for "vanilla" backtrack search. Global interchangeability should be explained more. Slide 16 , metric should be mentioned. Instead of constraint satisfaction…constraint satisfaction problem should be mentioned

Xu lin: introduce DNPI. Slide what is x?. Slide 28 it seems that when t is lower DNPI is more powerful than FC.

Cory:  why are there so many bounces in the graph on slide 21- is it because of phase transition. Are bundles good or bad.

Praveen: variable value ordering-  is useful when we are not searching for all the solutions. Also explaining what tightness and density are in general terms would be better.

Rob: how is CPR compared to DNPI.

Amy: CPR uses less cpu time because it

· uses more efficient data structure.

· CPR visits more nodes than DNPI

· CPR is not designed to work with dynamic variable ordering.

· DNPI-DLD performs better than CPR-SLD.

