
Minutes from “Multi-agent Oriented Constraint

Satisfaction”

Daniel Buettner
Lecture by Lin Xu

CSCE 976 Advanced Artificial Intelligence

May 2, 2002

1 Introduction

In the lecture from 1 May, we covered material from a brand new paper
by Jiming Liu, Han Jing, and Y.Y. Tang entitled Multi-agent oriented
constraint satisfaction. This paper discusses a “new” method of stochas-
tic search that is “totally-different” from local-search. In fact, this “new”
method can solve both the n-queens problem and coloring problems!

2 Lin’s lecture

The paper begins with a definition of a constraint satisfaction problem. Lin
noted that we were all quite familiar with this definition, but discussing it
helped to use up time in his presentation. The paper describes two general
methods for solving a CSP: generate and test (GT), and backtracking search
(BT). GT generates possible combinations of variables and checks whether
it has found a solution. BT systematically searches for solutions.

There are several improvements that have been made to increase the per-
formance of BT. Thrashing can be mitigated by application of consistency
techniques. Redundant work can be avoided by using a dependency directed
backtracking scheme. Of course, general CSP problems are NP-complete, so
even with these enhancements BT is still unable to solve sufficiently large
problems.

GT can be improved by making use of heuristics and stochastic algo-
rithms. Local search methods typically use iterative repair or hill climbing
techniques. To escape from local optima, these techniques will generally
make use of a random walk or random restart.

1



CSPs have also been solved by making use of neural networks and genetic
algorithms. Of course, no one method is perfect. Systematic search is sound
and complete: if a solution exists, it will be found. However, if the problem
is too large, systematic search will exhaust the system’s memory. Local
search has a much better chance of solving large problems, but it is not
complete: it makes no guarantee about ever finding the solution, nor can it
report that no solution exists.

Multiagent systems utilize several agents that work together in order to
achieve some goal. The agents themselves may have different goals, but their
organization can ensure that some overall goal is accomplished. CSPs can be
solved by a multiagent system by partitioning the variables into subproblems
which can each be solved by an agent. The constraints of the problem are
then placed between the agents. Finding a solution requires that all agents
find the values for their variables that satisfy not only their own constraints
but also interagent constraints.

Swarm-like systems are one method of simulating distributed multi-agent
systems which involves

• a living environment

• agents with reactive rules

• schedule serving

One of the paper’s authors developed an evolutionary autonomous agent
system as well as an energy-based artificial-life model for solving the n-
queens problem.

The paper proposes an approach that they call ERA which stands for
Environment, Reactive rules, and Agents (this is somewhat confusing, as
ERA traditionally stands for earned run average1). This approach is in-
tended to provide a multiagent formulation for solving general CSPs as well
as a method that can find an “approximate” “solution” without too much
cost. These “approximate” “solutions” are variable assignments that break
several constraints, and thus aren’t actually solutions to the problem. The
authors claim that the main difference between ERA and local search is in
the evaluation function. Of course, if this is the only difference, they aren’t
actually different.

1The ERA for a pitcher is calculated by multiplying the total number of earned runs
by nine, and dividing the results by the total innings pitched. This statistic represents the
average number of runs that a given pitcher would give up if he were to pitch a complete
game.

2



Lin then went on to discuss the fundamentals of the ERA approach. And
agent is a virtual entity that lives and acts in some environment. The agent
is able to sense the environment and is driven by certain objectives. The
agent should have some reactive behaviors. A multiagent system contains
an environment E in which the agent lives, a set of reactive rules R that
govern the interaction between the agent and its environment, and a set of
agents A.

The environment records the number of constraint violations in the cur-
rent state. Each agent represents a variable and the position of the agent
corresponds to the value of the agent. The objective of each agent is to move
to a position where the number of constraint violations is zero. A solution
state is defined as a state in which every agent is in a “zero-position”.

To find a solution state, the agents will select and execute some prede-
fined local reactive behaviors. The moves are guided by least-move, better-
move and random-move (WalkSAT did this years ago). In time step 0, the
system is initialized and each agent is assigned a random position. At each
clock increment, all of the agents decide on a new location to occupy. The
system terminates when all agents reach a zero-position or the the clock has
exceeded a time threshold.

According to the authors, the ERA algorithm has properties of termi-
nation and correctness. They guarantee termination because the algorithm
will either find a solution or exceed the allowed time slice. Correctness is
ensured because the algorithm will only return a solution that violates no
constraints.

However, the authors then go on to discuss their notion of an “approxi-
mate” “solution”. This is a “solution” which violates some number of con-
straints. They claim that their algorithm will always evolve towards a state
in which more constraints are satisfied.

Next, the authors compare their approach to those used by other re-
searchers. They claim that their method is better than min-conflict heuris-
tics because hill-climbing can get stuck in local minima. However, nobody
uses a hill-climbing search that doesn’t make use of random restart, so this
is a somewhat silly argument.

They next compare their work to Yokoo’s distributed constraint sat-
isfaction. Yokoo’s approach does not require global broadcasting but the
authors believe that his strategy of abandoning partial solutions after one
failure may be too costly. The authors comment that their use of broadcast
is cheap and helps reduce overhead cost. This seems odd.

Despite the fact that the ERA method is supposed to involve agents
operating simultaneously, it was implemented sequentially. One question

3



that they never address is how they would maintain coherency of information
in a truly parallel implementation.

3 Student interaction

Tibor: Broadcasting seems like a bad idea.
A: Yes, most people think multicasting is a much better way to

share information.
Cory: This was a bad paper. The author says nothing new. Rodney

Brooks would not approve!
A: It’s true.

Daniel: Why is local search called incomplete, but this paper’s
method is called complete?

A: That’s a good question. Their approach seems equivalent to
local search.

Rob: Can I implement sort using artificial life?
A: Why not?

Rob: Their logic notation is very confusing.
A: Very true. They seem to be using object-oriented dot nota-

tion instead of predicates.
Shabbir: At a later point in the paper, they say that ERA is incom-

plete.
A: Wow! They contradict themselves!

Praveen: I read 2 pages and simply couldn’t force myself to read any-
more. I could not believe that this was a recent paper.

A: It does seem strange that it was chosen for publication.
Praveen: What is this “Energy System” that they mention?

A: It seems to use the idea of entropy to find some configuration
that minimizes energy.

Amy: Quote of the day: “.. the ERA approach can be very efficient
and robust when applied in the right context.”

Lin: I apologise for making you read this paper.

4


