CSCE310 Data Structure & Algorithms Spring 2001

Homework 5

Name: ________________________

Given: Monday, April 9th, 2001.

Due: Friday, April 20th, 2001.

For the programming part, please use handin for the programming part.

__

You are asked to do the homework by your own and may not receive any help. You may discuss with the instructor, the TA, a colleague or a friend the content of the course, not the content of the homework. Please check the applicable option and sign your statement. Honesty is expected from you. If you fail to return this page with your homework, check a box, or sign, your homework will not be graded.
I hereby certify that:

I have done the homework completely by myself.

I have worked on the homework with another person.

Specify name:

I have received help but have written the homework independently.

Specify help:

I have copied the answers to the homework.

Specify source:

I refuse to answer this question.

Reason (optional):

 Signature: _____________________________

__

From the book, do:
Total 30 points

1) Page 240, Exercise 12.4-4.
(5 points)

2) Page 249, Exercise 13.2-1.
(10 points)
3) Page 254, Exercise 13.3-6.
(5 points)
4) Page 308, Exercise 16.1-1.
(5 points)

5) Page 309, Exercise 16.1-3.
(10 points)

6) Page 314, Exercise 16.2-3.
(5 points)

Program:
(70 points)
You are requested to implement one (1) of the following three (3) algorithms. They range from easy to more challenging. You can choose the degree of difficulty and the rewards in terms of grades depending on the effort you are willing to invest in this homework. Note that this is a good opportunity to improve your homework grades since the more difficult problems include a bonus:

1. (70 points) Easy: Implement a bottom-up dynamic programming algorithm that computes an optimal full parenthesization of a chain of matrices An given as a sequence of their dimension (po, p1, p2, …, pn(where matrix Ai has dimensions pi-1 rows and pi columns. You should write both the procedures for computing the cost of an optimal solution and the one that returns the full parenthesization.

Your program should first take an input which indicates the number of matrices to be multiplied. Then it will take the dimensions of the matrices as inputs. It will output the cost of the optimal solution and the optimal parenthesization.

For example if you wanted to use your program to analyze the problem presented on page 307 in the book you would input:

6

30 35 15 6 10 20 25

and get output

15125

((1 (2 3)) ((4 5) 6))

Please call your program matrix.cpp. As always, please include a makefile. If you used any classes that are in different files, please hand in those in as well. Include a README that explains the space and time complexity of the algorithm. (You don’t need to include the complexity of the input and output parts of the program, only the parts that compute the answers)

If you make any improvements, explain those as well. One possible improvement consists of using the same matrix for storing the values of m[i,j] and s[i, j], this is not a requirement. Use the problem in Figure 16.1 and that in Exercise 16.1-10 as tests for your program. To hand in this program type:

handin cse310 5 matrix1.cpp README makefile

2. (70 points + 10 points bonus) More challenging: Implement a top-down recursive algorithm that computes the same as the above. The input and output should be the same as above. Include a README than gives the space and time complexity of the algorithm. (You don’t need to include the complexity of the input and output parts of the program, only the parts that compute the answers.)

Call your program matrix2.cpp. To hand in this program type:

handin cse310 5 matrix2.cpp README makefile
3. (70 points + 30 points bonus) If you are bored and looking for a challenge: Implement a bottom-up recursive algorithm that computes the optimal triangulation of a polygon given by the Cartesian coordinate of its vertices and where the weight function of a triangle is equal to the sum of the Euclidean distance between its vertices (i.e., sum of the length of its edges). Check Section 16.4, page 320, in the textbook for guidance. For your program you can assume that any polygon you will be tested on will be simple (the lines do not cross each other) and convex.

Your program should take as input the number of vertices in your polygon. Then it will take the Cartesian coordinates of each of the vertices. It should output the weight of the optimal triangulation and the points that correspond to the optimal triangulation. (These points should be output in sets of 3 that correspond to the vertices of a triangle.)

Call your program triangulation.cpp. Include a README that gives the space and time complexity of the algorithm. (You don’t need to include the complexity of the input and output parts of the program, only the parts which compute the answers.) To hand in this program type:

handin cse310 5 triangulation.cpp README makefile
(END)
