CSE 310 Spring 2001

Solutions to Homework 1

Gennette Gill ggill@cse.unl.edu and Joel Gompert jgompert@cse.unl.edu

Acknowledgments and disclaimer:
Some material is taken from notes given by Dr. Cusack and Dr. Skiena. These notes are made available as a courtesy of the TAs and instructor. They are not guaranteed to be error-free or the most accurate, efficient or detailed. Feel free to notify the authors of bugs/improvements. No ‘bonus’ will be awarded.

1. This is the exact code from the book on page 3 except for one change.

Insertion-Sort(A)

for j = 2 length[A]

key = A[j]

► insert A[j] into the sorted sequence A[1..j-1]

i = j-1;

while i>0 and A[i]<key

A[i+1] = A[i]

i = i-1

A[i+1] = key

2. In this code A is the array to be searched and v is the value which we want to find. It returns a value i which is the index of an element in the array which contains the value v.

Search(A, v)

for i=1 to length[A]

if(A[i] = v)

return i

return NIL ►you only get to this line if the value was not found

3. Something similar to either one of these two is correct.

This is the code for a selection sort that sorts in place. A is the array to be sorted and n is the length of that array.

SelectionSort(A, n)

 for i = 1 to n - 1

min=i;

►start the index of the min value at i

for j= i+1 to n

 if(A[j] < A[min]) min=j; ►if we find something smaller, change the min index

temp = A[i]
►these three lines swap A[min] and A[i]

A[i] = A[min]
►put the value you just found at place i

A[min] = temp►put the value that used to be there at place min

Notice that the outer loop runs from mi = 0 to i= n-2, and each time calls the inner loop, which executes n-i-1 compares, no matter what is stored in the array. Thus, the total number of compares is

[image: image1.wmf])

(

2

)

1

(

1

2

2

0

1

1

n

n

n

i

i

n

n

i

n

i

Q

=

-

=

=

-

-

å

å

=

=

-

=

,

no matter what the input array is. The best and worst-case running times are both Θ(n2).

3. (An alternate solution) This is a selection sort that sorts into B leaving A as it was:

SelectionSort(A, n)

j = 1

while j < n

►go through the array j times

min = 1

ctmins=1

►how many values in A have the min value

for i = 2 to n

►this loop finds the next smallest value

if A[i] < A[min] AND (j = 1 or A[i] > A[lastmin])

►the first time through find the absolute smallest value. Subsequent times, make sure that ► it is larger than the last value you placed in B

min = i

ctmins = 1

►so far, you have only found one element in A with this value

if A[i] = A[min]

ctmins = ctmins + 1

►increment every time you find another element with min value

for c = j to j+ctmins-1
►put the value you found into B ctmins times

B[j] = A[min]

j = j + ctmins

lastmin = min

In this implementation, the worst case is the same as for the previous answer for the same reasons. The best case, however, is Θ(n) in the case where all the elements in array A have the same value.

4. This merge takes array A, and indices p, q, and r. p is the beginning of the first part and q is the end of the first part. q+1 is the beginning of the second part and r is the end of the second part.

This function modifies array A from p to r by merging the to arrays together in sorted order:

Void Merge(A, p, q, r)

length1 = q-p+1
►Find length of first part of array to be merged

length2 = r-q

►Find length of second part of array to be merged

B1 = new array[length1] ►B1 holds the first part of the array

for i = 1 to length 1

B1[i] = A[i+p]

B2 = new array[length2] ►B2 holds the second part of the array

for(i = 1 to length1)

B2[i] = A[i+m+1]

index1=1; index2=1 ►indices into B1 and B2 respectively

for counter = p to r

if(index2 > length2)

►if we’ve run off the end of B2 we must take the one from B1

A[counter] = B1[index1++]

else if(index1
[image: image2.wmf]£

 length1 AND B1[index1] < B2[index2])

►take the value from the first half if we haven’t gotten to the end of the

►first half AND if that value is smaller than the one in the second half

A[counter] = B1[index++]

else

►if we didn’t take from B1 take from B2

A[counter] = B2[index++]
5.

[image: image3.png]20000
18000
15000
14000
12000
10000
8000
6000
4000
2000

Solid curve is y1 = 8n2

(Insertion Sort)

Dashed curve is y2 = 64n lg(n)
(Merge Sort)

Points of intersection

n = 43.5593 y(n) = 15,179.3

also n = 1.1 y(n) = 9.68

y1 < y2 for interval [2, 43] y1 > y2 outside this interval

To merge sort faster for small inputs, we could have Merge-Sort call Insertion-Sort if n is less than 44 (and possibly some alternate sort if n is 2).

6.

a. The inversions are (1,5), (2,5), (3,4),(3,5), and (4,5).

b. The array (n, n-1, …,2,1) has n(n-1)/2 inversions. This can be seen by noting that the ith element of the array has n-I elements to its right that are smaller than it. Counting the total number, we have
[image: image4.wmf]2

)

1

(

1

1

1

0

-

=

=

-

å

å

=

-

=

n

n

i

n

n

i

n

i

 inversions.

c. For every inversion, an element must be moved. (On page 3 in the book, lines 6 and 7 must be executed.) In the best case, the running time of this algorithm is n; this is with no inversions. Each subsequent inversion adds some constant amount of time to the running time. So you can say that insertion sort is has a tight bound of n + k, where k is the number of inversions. Since the number of inversions is upper bounded by n2, this means that insertion sort will have a worst case running time of n2.

d. Looking at the code in problem 4, every time you move an element from B2 in to A, that means that that element is smaller than all the elements which I have not yet copied from B1 into A. The number of element in B1 that I have not yet copied into A is length1-index1+1. I will add this line of code after the last line in my current program

countInv = countInv + length1-index1+1

At the end it would return countInv.

7.

2n+1 = 2 x 2n = C x 2n
Where C is a constant. The two functions differ only by a multiplying constant.

Therefore 0
[image: image5.wmf]£

 2n+1
[image: image6.wmf]£

 C x 2n for n>0 and C = 2

So 2n+1 = O(2n)

As for 22n = O(2n), if it is true, then:

22n
[image: image7.wmf]£

 C x 2n
(2n)2
[image: image8.wmf]£

 C x 2n
2n
[image: image9.wmf]£

 C

But this cannot be true for all n if C is a constant.

So 22n ≠ O(2n)

8. n2/3 < 20n = 2​lgn < 4lgn = 4n2 = n2 < (3/2)n < 2n < n2n < 3n < n! < (n+1)!

9. Prove 4n = O(8n)

If 4n = O(8n) then 4n ≤ c8n for all n >no where c is some constant.> 0

Notice that 4nx2n​ = 8n , or
[image: image10.wmf]n

n

n

8

2

1

4

=

 So c must be ≥
[image: image11.wmf]n

2

1

For n ≥ 1, we can choose c=1 to make this statement true. So 4n = O(8n)

Show if 8n = O(4n)

If 8n = O(4n) then 8n ≤ c4n for all n >no where c is some constant.

Since 8n = 4nx2n​ it is clear that c would need to be equal to or greater than 2n for this statement to be true. However, it is impossible to find any constant such that c ≥ 2n for all n>no. This means that 8n ≠O(4n).

10. In these problems, we need to find some constant to multiply by which will make the function bigger than 3n2 – 100n +6. If this constant does not exist, then the bound is not correct.

3n2 – 100n +6 = O(n2) because 3n2 > 3n2 – 100n +6

3n2 – 100n +6 = O(n3) because .01n3 > 3n2 – 100n +6

3n2 – 100n +6 ≠ O(n) because we have to multiply n by 3n for it to be bigger than 3n2 – 100n +6 asymptotically.

In these problems, we need to find some constant > 0 to multiply by which will make the function smaller than 3n2 – 100n + 6. If no constant exists that will accomplish this, then the bound is not correct.

3n2 – 100n +6 = Ω(n2) because 2.99n2 < 3n2 – 100n +6

3n2 – 100n +6 ≠ Ω(n3) because we have to divide n3 by n for it to be smaller than 3n2 – 100n +6.

3n2 – 100n +6 = Ω(n) because 10n < 3n2 – 100 + 6

Since we have already checked for O and Ω bounds, finding if these are Θ bounds is simple. To prove a Θ bound, both the O and Ω bounds must also hold.

3n2 – 100n +6 = Θ(n2) because it is O and Ω

3n2 – 100n +6 ≠ Θ(n3) because it is not Ω

3n2 – 100n +6 ≠ Θ(n) because it is not O

(OVER)
_1042524060.unknown

_1042526677.unknown

_1042526797.unknown

_1042526522.unknown

_1030736983.unknown

