Greedy Algorithm

Textbook, Chapter 17, Sections 17.2 and 17.2

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444
For many optimization problems

Dynamic Programming may be an overkill
 Its performance depends on the number of subproblems
 Choice of subproblem remains an art

Greedy algorithms always make the choice that
 looks best at the moment
 Locally optimal choices
We need not know solutions to subproblems to make a choice
Sometimes yield globally optimal solutions
Greedy algorithms: Applicability

1. **Optimal substructure:** optimal solution contains optimal subsolutions

2. **Greedy choice property:** optimal solution can be obtained by making the ‘greedy’ choice at each step
Outline

1. Activity-selection problem: optimal solution with a greedy algorithm

2. Basic elements of the greedy strategy
 illustration on the knapsack problem

3. Design of data-compression code: optimal solution with a greedy algorithm, Huffman code

Many algorithms can be viewed as applications of the greedy method: coloring of interval graphs, minimum-spanning tree, etc.
Activity-selection Problem

Given:

- A set $S = \{1, 2, \ldots, n\}$ activities
- Each activity i starts at s_i (start time) and finishes at f_i (finish time)
 Naturally, $s_i \leq f_i$
- Activities need to be scheduled on a single resource: resource has capacity one, is non-sharable

Two activities i, j are compatible if they do not overlap: $s_i \geq f_j$ (j before i) or $s_j \geq f_i$ (i before j)

Find: the maximum set of mutually compatible activities

Activities are fixed in time \rightarrow a resource allocation problem (vs. scheduling problem)
Greedy algorithm for Activity-selection Problem

- Assume: activities ordered by **increasing** finishing time:
 \[f_1, f_2, f_3, \ldots, f_n \]
 otherwise, can be sorted in \(O(n \lg n) \)

- \(s, f \) represented as arrays

```
Greedy-Activity-Selector(s, f)
1   n ← length[s]
2   A ← {1}
3   j ← 1
4   for i ← 2 to n
5      do if s_i ≥ f_j
6          then A ← A ∪ {i}
7                  j ← i
8   return A
```
Greedy algorithm for Activity-selection Problem

- A collects selected activities
- j specifies most recent addition to A
- f_j is the maximum finishing time of activities in A:
 \[f_j = \max \{ f_k : k \in A \} \]
- Lines 2-3: select activity 1, initialize A, j
- Lines 4-7: consider each activity in turn and add it to A if it is compatible with the last activity in A, this compatible with all activities in A
- Lines 6-7: add the first such compatible activity to A and update j
Greedy-Activity-Selector(s,f)

- Assuming all activities were sorted, $\Theta(n)$
- Greedy: it leaves as much opportunity as possible for scheduling remaining activities
- Greedy choice: maximizes amount of unscheduled time remaining
- Theorem 17.1: Greedy-Activity-Selector produces optimal solution (i.e., maximum size) for activity-selection problem
Proof: Greedy-Activity-Selector finds optimal solution

Very informally:

- Activity 1 has the earliest finish time
- Greedy choice is activity 1
- **Goal:** prove there is an optimal solution that begins with a greedy choice, activity 1
- Suppose A is an optimal solution ($A \subseteq S$), elements in A ordered by increasing finish time
- Either $\text{First}(A) = 1 \longrightarrow A$ starts with the greedy choice
 or $\text{First}(A) = k$, and $k \neq 1$
• Suppose \(k \neq 1 \), and prove there is another optimal solution \(B \) starting with the greedy choice 1

• Since \(f_1 \leq f_k \), I can add activity 1 to \(A - \{k\} \) and all activities remain disjoint

• Let \(B = A - \{k\} \cup \{1\} \) (same activities as in \(A \) plus activity 1 and except activity \(k \)), all activities in \(B \) are disjoint and \(B \) has the same number of activities as \(A \rightarrow B \) is an optimal solution

• Since \(f_1 \) is the smallest \(f_i \), \(B \) is an optimal solution starting with activity 1

• There exists an optimal schedule starting with a greedy choice
• Make greedy choice, problem becomes: find optimal solutions for the activity-selection problem of activities in S that are compatible with activity 1

• Prove: A is optimal solution to $S \Rightarrow A' = A - \{1\}$ is optimal solution to $S' = \{i \in S : s_i \geq f_1\}$, which is the set of activities that are compatible with activity 1

• Suppose we could find a solution B' to S' with more activities than A'. Let's add activity 1 to B'.

• This yields a solution B to S with more activities than A.

• Contradicts optimality of A

• So, after each greedy choice, we encounter a similar optimization problem

• By induction on number of choices made, greedy choice at every step yields optimal solution
Greedy strategy: elements

- A greedy algorithm makes a sequence of greedy choices
- At every step, the greedy choice is the one that seems best
- Sometimes yields an optimal solution (sometimes, sub-optimal)

Ingredients exhibited by most problems suitable for a greedy strategy:

1. Greedy choice property
2. Optimal substructure: key property for Dynamic Programming and Greedy algorithms
Greedy choice property

A globally optimal solution can be derived by making a locally optimal choice

Dynamic programming: We make a choice at each step, but choice may depend on solutions to subproblems

Greedy algorithm: make whatever choice seems best at that moment, then solve subproblems arising after choice has been made

Choice may depend on previous choices made, but not on future choices or solutions to subproblems

Top-down approach: iteratively reducing each problem instance to a small one

Difficulty: prove greedy choice yields optimal solution, not a straightforward task
Dynamic programming vs. greedy algorithm

when is a greedy algorithm sufficient?
when is a dynamic programming required?

Illustration with two variants of famous knapsack problem

- 0-1 knapsack: dynamic programming required
 (Exercise 17.2-2, ask instructor for solution or check Dr. Cusack notes)

- Fractional knapsack: greedy algorithm suffices
Knapsack problem

A thief robbing a store:
— finds n items
— i^{th} item is worth v_i dollars and weighs w_i pounds, $v_i, w_i \in \mathbb{N}$
— he has a knapsack that can carry W pounds, $W \in \mathbb{N}$

Question: what items should he take (maximize gain)?

0-1 Knapsack

• thief can choose either to take or not to take an item

• thief cannot choose to take fraction of an item or take item more than once

Fractional knapsack problem

Same set up, but thief can take fraction of items
Optimal-substructure property

Satisfied by both knapsack problems 0-1 Knapsack

- Consider optimal (most valuable) load of weight at most W
- Remove j from optimal load
- remaining load must be the most valuable load weighing $W - w_j$ that can be taken from $n - 1$ items (excluding j)

Fractional Knapsack

- Consider optimal (most valuable) load of weight at most W
- Remove weight w from one item j from optimal load,
- Remaining load must be the most valuable load weighing $W - w$ that can be taken from $n - 1$ original items plus $w_j - w$ pounds of item j
Greedy algorithm for Fractional knapsack problem

- Compute value per pound for each item: v_i/w_i
- Thief should take as much as possible of item with greatest value per pound
- When supply is exhausted and thief can still carry more, he should take as much as possible of the next greatest value per pound, etc.
- Sorting items by value/pound, complexity: $O(n \lg n)$
Greedy algorithm does not work for 0-1 knapsack problem

Item 1: $6/pound, Item 2: $5/pound, Item 3: $4/pound,

Greedy: takes item 1 first, but sack is not filled to capacity
Optimal: takes item 2 and item 3, leaves item 1 :—
Greedy algorithm works for fractional knapsack problem

Item 1: $6/pound, Item 2: $5/pound, Item 3: $4/pound,

Greedy: takes 10 pounds of item 1, 20 pounds of item 2 and 20 pounds of item 3

Optimal
Why Greedy algorithm does not work for 0-1 knapsack problem

• When considering an item for inclusion in knapsack
 Compare solution of subproblem in which item is included to
 solution to subproblem in which item is excluded, before
 making a choice

• gives rise to many overlapping subproblems

• a hallmark of dynamic programming
Huffman codes

- Used to compress data (savings 20\% to 90\%)
- Widely used, very effective
- Effectiveness depends on characteristics of file
- Uses a table of frequencies of occurrence of each character → too restrictive in a real-world setting (e.g., Lempel-Ziv-Welsh LZW)
- Builds up an optimal way to represent each character as a binary string
Data encoding

Given:

- a data file with 100’000 characters
- list of characters that appear in file: \(\{ a, b, c, d, e, f \} \)
- Frequency of appearance of characters:
 \((a, 45000), (b, 13000), (c, 12000), (d, 16000), (e, 9000), (f, 5000) \)
- Characters represented by a **binary character code** (code)
 Each character is represented by a **binary string**

Goal: find a binary code for each character
Fixed length encoding: principle

Given the length:

- All characters are binary strings of length n (n-bit codeword)
- Number of possible characters is 2^n
- A data file 100 characters requires $100n$ bits of storage after encoding

Given the number of characters to encode:

- There are k characters to encode (k-bit codeword)
- Number of necessary bits: $\lceil \lg k \rceil$

Example:

- 6 characters $\Rightarrow n = 3$ (3-bit codeword)
- $a = 000, b = 001, c = 010, d = 011, e = 100, f = 101$
- A file of 100,000 characters can be encoded in 300,000 bits
From fixed to variable length encoding

Characters have fixed length:
Frequent characters and rare characters use same codeword length

Idea:
If we encode frequent characters with shorter codewords
we will need need longer codewords for rarely occurring
characters
we may save on size of encoded file

Example:
Frequency of appearance of characters:
(a, 45000), (b, 13000), (c, 12000), (d, 16000), (e, 9000), (f, 5000)

Encoding: (a, 0), (b, 101), (c, 100), (d, 111), (e, 1101), (f, 1100)

Requires: $(45 \cdot 1) + (13 \cdot 3) + (12 \cdot 3) + (16 \cdot 3) + (9 \cdot 4) + (5 \cdot 4) \cdots 10^3$

= 224,000 bits
Fixed length encoding: 300,000 bits
Variable length encoding: 224,000 bits
Savings: 25% approx.
Note: this is an optimal character code for this file
Prefix code (read: prefix-free code)

- No codeword is a prefix of another codeword
- Prefix code are desirable: encoding are decoding are simple
- Encoding is done by simple **concatenation** of codewords representing characters
 Example: $abc \rightarrow 01011100$

- Decoding: codewords are unambiguous as no codeword is a prefix of any other
 Identify initial codeword, translate it back, remove it from encoded file, and repeat..
 Example: $001011101 \rightarrow aabe$

- **Side note:** it can be shown that the optimal data compression achievable by a character code can **always** be achieved with a prefix code.
 \Rightarrow restriction to prefix code causes no loss of generality
Binary tree representation of a prefix code

Useful for quick decoding: codeword can be easily picked off

Binary tree:

— Leaves represent the characters to encode
— Path from root to a leaf interpreted as binary codeword:
 left child means 0, right child means 1
— Binary trees, not binary search trees: internal nodes do not contain character keys, leaf keys do not necessarily by binary search tree property
Optimal prefix-code representation: full binary tree

An **optimal** code is always represented by a **full** binary tree (every nonleaf node has two children)

Fixed-length code: not a full binary tree, thus not optimal
∃ codewords beginning with 10 but ¬∃ beginning with 11
Optimal prefix-code representation: full binary tree

If C is the alphabet, then the tree for an optimal prefix code has:

- $|C|$ leaves
- $|C| - 1$ internal nodes
Optimal prefix-code representation: full binary tree

If C is the alphabet, then the tree for an optimal prefix code has:

- $|C|$ leaves
- $|C| - 1$ internal nodes

Proof: Suppose it has x internal nodes aside from the root:

- number of nodes in tree $= x + |C| + 1$
- number of edges in tree $= $ number of nodes -1 $= x + c$
- Degree of nodes: leaf node = 1, root node = 2, otherwise = 3
- Sum (degree of nodes) $= 2$ number of edges in tree (handshaking lemma)

$c + 3x + 2 = 2(x + c) \Rightarrow x = c - 2$

- number of internal nodes $= x + 1$ (root) $= c - 1$
Optimal prefix-code representation:
number of bits required

Given Tree T, for each character $c \in C$:

- $f(c)$ denotes frequency in file
- $d_T(c)$ denotes depth of c’s leaf in the tree
 $d_T(c)$ is also the length of codeword for c

Cost of T: The number of bits required to
encode a file:

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

Can be obtained by summing values of internal
nodes, including root

(Expression reminds us of Shannon entropy
$- \sum p_i \lg(p_i))$ (double-check)
Huffman code

Greedy algorithm for constructing optimal code, bottom-up manner.

- Starts with $\|C\|$ leaves, performs $\|C\| - 1$ merging operations
- C set of n characters, for $c \in C$, $f[c]$
- Q priority queue, keyed on f, lists characters, objects, with increasing frequency
 - how to implement Q? What needs to be changed?
- Consider the 2 least-frequent objects and merge them
 - Replace them into one object with frequency = sum of individual frequencies
 - Link new and original nodes, label edges with 0 and 1
 - Position new object in priority queue
- repeat until the list has only one node
Huffman code: Example

\(n = 6\), 5 merge steps required

(a) \(f:5\) \(e:9\) \(c:12\) \(b:13\) \(d:16\) \(a:45\)

(b) \(c:12\) \(b:13\) \(14\)

\(0\) \(1\)

\(f:5\) \(e:9\)

\(d:16\) \(a:45\)

(c) \(14\)

\(0\) \(1\)

\(f:5\) \(e:9\)

\(c:12\) \(b:13\)

\(d:16\)

\(25\)

\(0\) \(1\)

\(c:12\) \(b:13\)

\(a:45\)

(d) \(25\)

\(0\) \(1\)

\(c:12\) \(b:13\)

\(14\) \(d:16\)

\(30\)

\(0\) \(1\)

\(f:5\) \(e:9\)

\(a:45\)
Final tree represents optimal prefix code
Codeword for a character is sequence of edge labels
Huffman code: Pseudocode

HUFFMAN(C)

1. $n \leftarrow |C|$
2. $Q \leftarrow C$
3. for $i \leftarrow 1$ to $n - 1$
 4. do $z \leftarrow \text{ALLOCATE-NODE}()$
 5. $x \leftarrow \text{left}[z] \leftarrow \text{EXTRACT-MIN}(Q)$
 6. $y \leftarrow \text{right}[z] \leftarrow \text{EXTRACT-MIN}(Q)$
 7. $f[z] \leftarrow f[x] + f[y]$
 8. $\text{INSERT}(Q, z)$
4. return $\text{EXTRACT-MIN}(Q)$
There will be $u - 1$ merges
(LEFT/RIGHT not important: yields different codes of same cost)
and y replaces them with a new node z, parent of x and y

Time 9: Returns root

Time 3–8: Repeatedly extracts the 2 nodes of lowest frequency x

Time 2: initializes \mathcal{O} with characters in C

Human code: Interpretation of Pseudocode
Huffman code: Analysis

- Assuming Q implemented as a binary heap
- Line 2 requires Build-Heap $\rightarrow O(n)$
- Lines 3–8 called $n - 1$ times
- Each Extract-Min requires $O(\lg n)$
- Lines 3—8 cost $O(n \lg n)$
- Total running time for n characters $O(n \lg n)$
Huffman code: Correctness

We need to prove that problem of determining optimal prefix code has:

1. Greedy choice property: Lemma 17.2
 If x and y have the lowest frequencies, then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ in only the last bit

2. Optimal-substructure property: Lemma 17.3
 Let z be the parent of any two characters x and y siblings leaves in T, with $f[z] = f[x] + f[y]$, $T' = T - \{x, y\}$ is an optimal prefix code for $C' = C - \{x, y\} \cup \{z\}$
Huffman code: Proof of Greedy choice property (I)

Informally: *If* x *and* y *have the lowest frequencies, then there exists an optimal prefix code for* C *in which the codewords for* x *and* $y *have the same length and differ in only the last bit*

Idea:

- Take T, tree representing an arbitrary optimal prefix code
- Modify T to generate T', a tree representing another optimal prefix code such that x and y appear as sibling leaves in the new tree
- If we can do that, then their codewords will have same length and differ only in the last bit
Huffman code: Proof of Greedy choice property (II)

- Let b, c sibling leaves of maximum depth in T, assume $f[b] \leq f[c]$ and $f[x] \leq f[y]$
- x, y lowest frequency leaf frequencies, then $f[x] \leq f[y] \leq f[b] \leq f[c]$ and, a fortiori, $f[x] \leq f[b]$ and $f[y] \leq f[c]$
- Exchange $b \leftrightarrow x$ in T, yielding T'
- Exchange $c \leftrightarrow y$ in T', yielding T''
- Compute $B(T) - B(T'')$, and show $B(T) - B(T') \geq 0$
 Similarly, $B(T') - B(T'') \geq 0$
 Therefore $B(T) \geq B(T') \geq B(T'')$
- Since T is optimal then $B(T) = B(T') = B(T'')$, and T'' is optimal
Greedy choice property: Lesson

Lemma 17.2 establishes that to build up an optimal tree by mergers, we can, without loss of generality begin with the greedy choice of merging together those two characters of lowest frequency.

Why is this a greedy choice:

- **Cost** of a single merger is sum of frequencies of 2 objects being merged
- Huffman code chooses the merger that incurs the least cost
- Incidentally, the sum of all mergers (cost of root) is the cost of the code
Huffman code: Proof of optimal substructure property

Informally: *Let z be the parent of any two characters x and y siblings leaves in T, with $f[z] = f[x] + f[y]$, $T' = T - \{x, y\}$ is an optimal prefix code for $C' = C - \{x, y\} \cup \{z\}$*

Idea:

- We show that the cost $B(T)$ can be expressed in terms of $B(T')$.

- $\forall c \in C - \{x, y\}$, $d_T(c) = d_{T'}(c)$

 $\Rightarrow f[c]d_T(c) = f[c]d_{T'}(c)$

 Since $d_T(x) = d_T(y) = d_T(z) + 1 = d_{T'}(z) + 1$

 Therefore, $f[x]d_T(x) + f(y)d_T(y) = f[z]d_{T'}(z) + (f[x] + f[y])$

 $\Rightarrow B(T) = B(T') + f[x] + f[y]$

- Suppose T' represents a **nonoptimal** prefix code for $C' \Rightarrow \exists T''$

 with $B(T'') < B(T')$

- $z \in C' \Rightarrow z$ is a leaf in T''
• Adding \(x \) and \(y \) as children of \(z \) in \(T'' \) yields a prefix code for \(C \) with cost \(B(T'') + f[x] + f[y] \).

Since \(B(T'') < B(T') \Rightarrow B(T'') + f[x] + f[y] < B(T') + f[x] + f[y] = B(T) \)

So we have a prefix code for \(C \) cheaper than \(B(T) \)

• Contradiction with optimality of \(T \) and \(T' \) must be optimal for \(C' \)