Binary Search Trees

Textbook, Chapter 13, Sections 13.2 and 13.3
For Section 13.1, refer to Handout on Trees

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444
Binary search trees

is a binary tree that satisfies the **binary-search-tree property**

For any node x,
- If y is a node in the left subtree of x, then $key[y] \leq key[x]$
- If y is a node in the right subtree of x, then $key[x] \leq key[y]$

In-order tree traversal prints the key in a sorted order
Operations

Given a binary-search tree, we may want to:

1. **Queries:** Search, Minimum, Maximum, Successor, Predecessor

2. **Modifications:** Insertion, Deletion

→ All operations in $O(h)$, h height of the tree
Searching: recursive

Input: pointer to the root, \(k \)

Output: pointers to node whose key is \(k \), Nil otherwise

Tree-Search\((x, k)\)

If \(x = \text{Nil} \) or \(k = \text{key}[x] \)

then return \(x \)

If \(k < \text{key}[x] \)

then return Tree-Search\((\text{left}[x], k)\)

then return Tree-Search\((\text{right}[x], k)\)

Begins at the root, traces a path downward
Searching: Iterative
Recursive, can easily be made iterative

\[
\text{ITERATIVE-TREE-SEARCH}(x, k)\\
\begin{align*}
1 & \text{ while } x \neq \text{NIL and } k \neq \text{key}[x] \\
2 & \quad \text{do if } k < \text{key}[x] \\
3 & \quad \text{then } x \leftarrow \text{left}[x] \\
4 & \quad \text{else } x \leftarrow \text{right}[x] \\
5 & \text{ return } x
\end{align*}
\]
Minimum/Maximum

- Minimum: follow left
- Maximum: follow right

Tree-Minimum(x)

```plaintext
While left[x] ≠ Nil
    do x ← left[x]

return x
```

Tree-Maximum(x)

```
1 while right[x] ≠ NIL
2    do x ← right[x]
3    return x
```

Correctness guaranteed by the binary-search-tree property

Complexity: $O(h)$
Minimum (Maximum): follow left

Tree-Minimum(x)

While $left[x] \neq \text{Nil}$
 do $x \leftarrow left[x]$

return x

Correctness:

x has no left tree: since every key in the right subtree has a value at least as large as $key[x]$
then, return x

x has a left tree: since no key in the right subtree has a value smaller than $key[x]$
and every key in the left subtree has a value not larger than $key[x]$

So, the minimum should be found in the subtree rooted at $left[x]$
Successor/Predecessor

Find successor/predecessor in the sorted order
(sorted order is determined by the in-order tree walk)

Assuming, all keys are distinct, and given a node x

- successor of x is the smallest key that is greater than the key of x
- predecessor of x is the greatest key that is smaller than the key of x

Successor, predecessor can be determined without ever comparing keys!
Successor

Input: node x

Output: its successor if it exists, Nil otherwise
(i.e., x has the largest key)

$$\text{Tree-Successor}(x)$$

1. if $\text{right}[x] \neq \text{NIL}$
2. then return $\text{Tree-Minimum}(\text{right}[x])$
3. $y \leftarrow p[x]$
4. while $y \neq \text{NIL}$ and $x = \text{right}[y]$
5. do $x \leftarrow y$
6. $y \leftarrow p[y]$
7. return y

2 cases:

1. if the right subtree of x is not empty, then successor is...

2. otherwise, and x has a successor y, then y is the lowest ancestor of x whose left child is also an ancestor of x
successor(15) = 17, successor(6) = 7, successor(7) = 9, etc.
successor(13) = 15

Complexity: either going down, or up the tree, $O(h)$
Important note

If a node has two children:

- Its successor is in its right tree
- Its predecessor is in its left tree

Further

- Its successor cannot have a left child
 such a child would come between the node and its successor
 it comes after the node: it is in the node’s right subtree
 it comes before the successor: it is in the left subtree
 not possible!!
- Its predecessor cannot have a right child
Insertion/Deletion

Modify the tree
Careful for preserving binary-search-tree property

Insertion: easy

Deletion: more intricate
Insertion

Input: a node \(z \), \(key[z] = v \),
\(left[z] = right[z] = \text{Nil} \)

Output: \(T \), some fields of \(z \) are modified, \(z \) inserted in correct position

\[
\text{Tree-Insert}(T, z)
\]

1. \(y \leftarrow \text{NIL} \)
2. \(x \leftarrow \text{root}[T] \)
3. while \(x \neq \text{NIL} \) do \(y \leftarrow x \)
4. if \(key[z] < key[x] \) then \(x \leftarrow \text{left}[x] \)
5. else \(x \leftarrow \text{right}[x] \)
6. \(p[z] \leftarrow y \)
7. if \(y = \text{NIL} \) then \(\text{root}[T] \leftarrow z \)
8. else if \(key[z] < key[y] \) then \(\text{left}[y] \leftarrow z \)
9. else \(\text{right}[y] \leftarrow z \)

begins at root, traces a path downward
\(x \) traces the path, \(y \) follows (maintains parent of \(x \))
Pointers go left or right depending on whether
how keys of \(x \) and \(z \) compare
Until \(x \) is \(\text{NIL} \), this is where we want to put \(z \), as
a child of \(y \)
Deletion

Input: a point to node
Output: modified tree

Considers three cases:
1. z has no children
2. z has a single child
3. z has 2 children
z has no children: 13

Modify parent, $p[z]$, to replace z with Nil
z has a single child: 16

Splice out z by making a new link between its parent and its child
z has two children: 5

Splice out $successor(z) = y$ (y cannot have a left child)
replace the content of z with the contents of y
Tree-Delete(T, z)
1. if left[z] = NIL or right[z] = NIL
2. then y ← z
3. else y ← Tree-Successor(z)
4. if left[y] ≠ NIL
5. then x ← left[y]
6. else x ← right[y]
7. if x ≠ NIL
8. then p[x] ← p[y]
9. if p[y] = NIL
10. then root(T) ← x
11. else if y = left[p[y]]
12. then left[p[y]] ← x
13. else right[p[y]] ← x
14. if y ≠ z
15. then key[z] ← key[y]
16. ▷ If y has other fields, copy them, too.
17. return y

1...3 determines a node y to splice out (y = z or y = successor(z))
4...6 x is set to non-nil child of y (or to Nil)
7...13 splice out y by modifying pointers in p[y] and x
14...16 move the contents of z from y to z
17: return y so it can be recycled

Complexity: O(h)