Hash tables (III)

Textbook, Chapter 12, Sections 12.4 (end)

CSCE310: Data Structures and Algorithms

www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444
Open Addressing

Three techniques:

1. Linear probing
2. Quadratic probing
3. Double hashing

Main characteristics:

- All three guarantee that $\forall k$, $\langle h(k, 1), h(k, 2), \ldots, h(k, m) \rangle$ is a permutation on $\langle 0, 1, \ldots, m - 1 \rangle$
- None fulfills the assumption of uniform hashing (since none is capable of generating more than m^2 probe sequences of the required m!)
- Double hashing has the greatest number of problem sequences and gives best results
Linear probing: Principle

Given a hash function: \(h' : U \rightarrow \{0, 1, \ldots, m-1\} \)

Linear probing uses: \(h(k, i) = h'(k) + i \mod m \), for

\[i = 0, 1, \ldots, m-1 \]

Given \(k \), probes: \(T[h'(k)], T[h'(k) + 1], T[h'(k) + 2], \ldots, T[m-1] \)

\(T[0], T[1], \ldots, T[h'(k)] - 1 \)

- To insert an element: start with the hash value, proceed element by element until finding an empty slot
- To search for an element: start with the hash value, proceed element by element until finding the key sought

Example:

Let \(h'(k) = k \mod 13 \), insert 18 41 22 59 32 31 73 in h-table of size 13

B.Y. Choueiry
Linear probing: Characteristics

• Uses only m distinct probe sequences
• Easy to implement
• Suffers from primary clustering: long runs of occupied slots build up, tend to get longer \rightarrow Average search time increases
• Linear probing is not a good approximation to uniform hashing
Primary Clustering: Examples

- Table has \(n = m/2 \) keys stored.
 Every even-indexed slot is occupied, odd-indexed slot is empty
 \(\Rightarrow \) Average unsuccessful search takes 1.5 probes

- If first \(n = m/2 \) first slots are the ones occupied, average number of probes becomes \(n/4 = m/8 \)
Quadratic probing: Principle

Given a hash function: $h' : U \rightarrow \{0, 1, \ldots, m - 1\}$

Quadratic probing uses: $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$
with c_1, c_2 auxiliary constants and $i = 0, 1, \ldots, m - 1$

Given k, probes: $T[h'(k)]$, later positions are offset by amounts
that depend in a quadratic manner on the probe number i
Quadratic probing: Characteristics

Quadratic probing uses: \(h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m \)

- Better performance than linear probing
- Initial probe determines entire sequence, only \(m \) distinct probe sequences are used
- To work well, values of \(c_1, c_2, m \) need to be selected carefully
- But, \(h(k_1, 0) = h(k_2, 0) \Rightarrow h(k_1, i) = h(k_2, i) \ \forall \ i \) :
- Yields a milder form of clustering: secondary clustering
Double hashing: one of the bests for open-addressing

Permutation produced have many of the characteristics of randomly chosen permutations

Double hashing uses: \(h(k, i) = (h_1(k) + ih_2(k)) \mod m \)
where \(h_1, h_2 \) are auxiliary h-functions, and \(i = 0, 1, \ldots, m - 1 \)

Given \(k \), probes: \(T[h_1(k)] \), later positions are offset by amount of \(h_2(k) \mod m \)
→ probe sequence depends in two ways on the key, \(k \)
 (1) initial probe varies with \(k \)
 (2) offset value varies with \(k \)
Double hashing: Example I

Double hashing uses:
\[h(k, i) = (h_1(k) + ih_2(k)) \mod m \]

using \(h_1(k) = k \mod 13 \) and \(h_2(k) = 1 + (k \mod 11) \), insert \(k = 14 \)
Double hashing: Characteristics

Double hashing uses: \(h(k,i) = (h_1(k) + ih_2(k)) \mod m \)

- Ensure \(m \) and value of \(h_2(k) \) are relatively prime (i.e., do not have a common divisor).
 Otherwise, for common divisor \(d > 1 \), search for a key will examine \((1/d)^{th}\) of h-table.

- One solution: \(m = 2^p \) and \(h_2 \) always returns an odd number

- Another solution: \(m \) a prime number, and \(h_2 \) returns positive integer \(< m\)

 Example: \(m \) prime, \(h_1(k) = k \mod m \), and
 \(h_2(k) = 1 + (k \mod m') \), \(m' = m - 1, m - 2 \)

- \(\Theta(m^2) \) probe sequences are used

- Double hashing appears closer to the uniform hashing scheme
Double hashing: Example II

With \(h_1(k) = k \mod 13 \), \(h_2(k) = 1 + (k \mod 8) \), and \(m = 13 \)

We have: \(h(k, i) = (h_1(k) + ih_2(k)) \mod 13 \)

Insert the following keys: 18, 41, 22, 44, 59, 32, 31, 73
Double hashing: Performance

— Given $\alpha = n/m \leq 1$, average number of keys in h-table
— Assuming uniform hashing: the probe sequence
 $\langle h(k, 1), h(k, 2), \ldots, h(k, m) \rangle$ for each key k is equally likely to be any permutation on $\langle 0, 1, \ldots, m - 1 \rangle$

Theorem 12.5: ... the expected numbers of probes is in an unsuccessful search is at most $1/(1 - \alpha)$

Corollary 12.6: Inserting an element requires at most $1/(1 - \alpha)$ probe on average

Theorem 12.7: ... the expected numbers of probes is in a successful search is $\frac{1}{\alpha} \ln \frac{1}{1 - \alpha} + \frac{1}{\alpha}$.. and assuming every key in the table is equally likely to be searched for.