В.А. Сропецъ

Linear probing: Principle

Given a hash function: $h':U\to\{0,1,\ldots,m-1\}$

 $i=0,1,\ldots,m-1$ Linear probing uses: $h(k,i) = h(h'(k) + i) \mod m$, for

 $T[0], T[1], \ldots, T[h'(k) - 1]$

Given k, probes: T[h'(k)], T[h'(k) + 1], T[h'(k) + 2], ..., T[m - 1],

8

element by element until finding an empty slot To insert an element: start with the hash value, proceed

To search for an element: start with the hash value, proceed

element by element until finding the key sought

Courtesy of Dr. Cusack

size 13 Let $h'(k) = k \mod 13$, insert 18 41, 22, 59, 32, 31, 73 in h-table of

March 28, 2001

В.А. Сропецъ

Linear probing: Characteristics

- Uses only m distinct probe sequences
- Easy to implement

₽

- Suffers from primary clustering: long runs of occupied slots build up, tend to get longer \rightarrow Average search time increases
- Linear probing is not a good approximation to uniform hashing

March 28, 2001

В.А. Сропецъ

Hash tables (III)

Textbook, Chapter 12, Sections 12.4 (end)

Ţ

CSCE310: Data Structures and Algorithms www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri) Ferguson Hall, Room 104

choueiry@cse.unl.edu, Tel: (402)472-5444

March 28, 2001

Open Addressing

B.Y. Choueiry

Three techniques:

- 1. Linear probing
- . Quadratic probing
- 3. Double hashing

Main characteristics:

7

- All three guarantee that $\forall k, \langle h(k,1), h(k,2), \dots, h(k,m) \rangle$ is a permutation on $\langle 0, 1, \dots, m-1 \rangle$
- None fulfills the assumption of uniform hashing (since none is required m!) capable of generating more than m^2 probe sequences of the
- and gives best results Double hashing has the greatest number of problem sequences

March 28, 2001

В.А. Сропецъ

Quadratic probing: Characteristics

Quadratic probing uses: $h(k,i) = (h'(k) + c_1 i + c_2 i^2) \mod m$

Better performance than linear probing

7

- Initial probe determines entire sequence, only m distinct probe sequences are used
- To work well, values of c_1, c_2, m need to be selected carefully
- But, $h(k_1, 0) = h(k_2, 0) \Rightarrow h(k_1, i) = h(k_2, i) \ \forall \ i :--$
- Yields a milder form of clustering: secondary clustering

March 28, 2001

Double hashing: one of the bests for open-addressing

В А Сропеіту

Permutation produced have many of the characteristics of randomly chosen permutations

where h_1, h_2 are auxiliary h-functions, and $i = 0, 1, \dots, m-1$ Double hashing uses: $h(k, i) = (h_1(k) + ih_2(k)) \mod m$

8

 $h_2(k)$ modulo mGiven k, probes: $T[h_1(k)]$, later positions are offset by amount of

- \rightarrow probe sequence depends in two ways on the key, k
- (1) initial probe varies with k
- (2) offset value varies with k

March 28, 2001

March 28, 2001

Primary Clustering: Examples

В.А. Сропецъ

- Table has n = m/2 keys stored.
- \Rightarrow Average unsuccessful search takes 1.5 probes Every even-indexed slot is occupied, odd-indexed slot is empty

ç

If first n = m/2 first slots are the ones occupied, average number of probes becomes n/4 = m/8

В А Сропеіту

Quadratic probing: Principle

Quadratic probing uses: $h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$ Given a hash function: $h':U\to\{0,1,\ldots,m-1\}$

with c_1, c_2 auxiliary constants and $i = 0, 1, \ldots, m-1$

9

that depend in a quadratic manner on the probe number iGiven k, probes: T[h'(k)], later positions are offset by amounts

March 28, 2001

I 2 March 28, 2001

1001

March 28, 2001

В. Д. Сролеіту

Double hashing: Example II

With $h_1(k) = k \mod 13$, $h_2(k) = 1 + (k \mod 8)$, and m = 13

π

Courtesy of Dr. Cusack

В.А. Сропецъ

We have: $h(k,i) = (h_1(k) + ih_2(k)) \mod 13$

Insert the following keys: 18, 41, 22, 44, 59, 32, 31, 73

В. А. Сропеіту

Double hashing: Performance

В.А. Сропецъ

Given $\alpha = n/m \le 1$, average number of keys in h-table

Assuming uniform hashing: the probe sequence

 $\langle h(k,1),h(k,2),\dots,h(k,m)\rangle$ for each key k is equally likely to be any permutation on $\langle 0,1,\dots,m-1\rangle$

Theorem 12.5: ... the expected numbers of probes is in an unsuccessful search is at most $1/(1-\alpha)$ Corollary 12.6: Inserting an element requires at most $1/(1-\alpha)$

oromary (2.0: inserting an element requires at most $1/(1-\alpha)$ probe on average

Theorem 12.7: ... the expected numbers of probes is in a successful search is $\frac{1}{\alpha} \ln \frac{1}{1-\alpha} + \frac{1}{\alpha}$.. and assuming every key in the table is equally likely to be searched for.

Double hashing: Characteristics

Double hashing uses: $h(k,i) = (h_1(k) + ih_2(k)) \mod m$

Ensure m and value of $h_2(k)$ are relatively prime (i.e., do not have a common divisor).

Otherwise, for common divisor d>1, search for a key will examine $(1/d)^{th}$ of h-table.

One solution: $m = 2^p$ and h_2 always returns an odd number

10

Another solution: m a prime number, and h_2 returns positive integer < m

Example: $m \text{ prime}, h_1(k) = k \mod m$, and $h_2(k) = 1 + (k \mod m'), m' = m - 1, m - 2$

 $\Theta(m^2)$ probe sequences are used

March 28, 2001

Double hashing appears closer to the uniform hashing scheme

1002,82 dorsM

6

using $h_1(k)=k \mod 13$ and $h_2(k)=1+(k \mod 11),$ insert k=14

Double hashing uses: $h(k,i) = (h_1(k) + ih_2(k)) \bmod m$

Donple hashing: Example I