and fewer data moves.

- Double hashing has the greatest number of problem occurrences.
- Error tolerations are more than 1/2 problem resolution of the
- Normal random insertions are parallel hashing (there is no
- Error tolerations on (0, 1, 2, ..., m - 1) where
- All these tolerations have V, (V, Z) (V, Z)^m in
- When characteristics:
 1. Insert Problem
 2. Double hashing
 3. Quadratic probing
 4. Linear Probing

Example: Characteristics

Linear Probing: Hash Tables

Section 12.2 Sections 12.4 (end)
Quadratic probing: Primary clustering Examples

Primary clustering: Examples

Double hashing: One of the best for open-addressing

Permutation produced have many of the characteristics of

— Deletion in an h-shaft tree of duration secundary duration

— Deletion in an h-shaft tree of duration secundary duration

— Deletion in an h-shaft tree of duration secundary duration

— Deletion in an h-shaft tree of duration secundary duration

— Deletion in an h-shaft tree of duration secundary duration

— Deletion in an h-shaft tree of duration secundary duration

— Deletion in an h-shaft tree of duration secundary duration
Double hashing: Choose a second hash function $h_2(k)$ such that $h_2(k) \neq h_1(k)$ for all k. Then, the final hash value is given by $h(k) = h_1(k) + m \cdot h_2(k)$, where m is a large prime number.

Example: $h_1(k) = k \mod 13$ and $h_2(k) = (k^2 + 3k + 5) \mod 11$, in this case $h(k) = 1 + k$.