ALienoyp "x'g

100z ‘62 Y21

Hash tables (II)

Textbook, Chapter 12, Sections 12.3 and 12.4 (partially)

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/"choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444

N

/

v
=
Formally: Simple uniform hashing requires
MU P(k) = Wq for 7=0,1,... ,m—1
m
k:h(k)=j
Problem: we rarely know distribution P(k)
w
When keys are random real numbers k independently and
uniformly distributed in the range of 0 < k < 1,
h(k) = |km|
satisfies simple uniform hashing assumption
£
=
<
: N
¢ | Hash functions
1. Division method
2. Multiplication method
3. Universal hashing
=~ | Assumption: keys are natural numbers (€ N)
If keys € N, find a way to express them as such
Example: strings can be interpreted by interpreting each character
as an integer in notation radix-128, using the ASCII character set
| Dlustration: pt can be interpreted as (112.128) +116 = 14452,
m since p = 112 and t = 116 in the ASCII character set

Auenoyp “X'g

1007 ‘6% UoIeIN

\mmmr functions
A good hash function
e can be computed quickly

e satisfies (approx.tely) the simple uniform hashing assumption:

each key is equally likely to hash to any of the m slots

Formally:

Assume each key is drawn independently from U with probability
distribution P

P(k) is the probability that k is drawn

Simple uniform hashing =

M WASHF“ for j=0,1,... m—1
m
kih(k)=j

/Ioéméﬁ P is usually unknown

~

ALienoyp "x°g

1007 ‘67 Y21

4 N

Values of m to avoid: m power of 2, m = 2P
If m = 2P, then h(k) is just the p lowest order bits of k

Lesson: Unless P(k) makes all low-order p-bits patterns equally
likely, it is preferable to make the hash function depend on all the
bits of the key

Values of m to aveid: m power of 10, m = 10P

Similarly, avoid powers of 10 if keys are decimal numbers (as hash
function does not depend on all the decimal digits of k)

. /

ALienoyp "x°g

100Z ‘6T UPIeIN

\Umimmo: method (1) J

Principle:
takes the remainder of k divided by m: h(k) = k mod m
Example:
m =12 and k =100 = h(k) =8 x 12+ 4 (mod 12) =4 (mod 12)
Characteristics:
e Quick hash function
e Avoid certain values of m:
1. k is a binary number, avoid m = 2?
2. k is a decimal number, avoid m = 107
3. k is a character string in radix 27, avoid m = 2P — 1
4. Good values for m are primes not too close to exact powers of 2

Example: n = 2000 character strings
If a = 3 then choose m = 701, a prime not too close to a power

/ of 2 (512 and 1024) = h(k) = k mod 701 \

ALaenoyp "x'g

1007 ‘62 UoIeN

4 N

Values of m to aveid: m =27 —1 (1)

when the key is a character string in radix 2P, two strings that are
identical except for a transportation of two adjacent characters will

hash to the same value

We prove for two keys a, b, such that:
a=(ao,ar,... 0. .. y Ay et ,ak)

b={(ao,ar, .., ..., ;... ,ax)

we have h(a) = h(b)

\ v

ALaenoyp "x'g

1007 ‘6% UoIeIN

@ N

Values of m to avoid: m power of 2, m = 2P

Consider the key a, a binary number,
a=(ap,a,...,ar) = ax2F +ax_12°"1 4+ ...+ a12 +ag

Assuming k > p, the key can be written

a=2P(a;2" P+ ... +ay)+ (ap,_1227 + ...+ a12 + ap)

where (a,—12P71 + ...+ @12+ ag) < 2P

thus a = ¢2P +r

where ¢ = a;257P + ... + ap and r = awlpwv\H +...4+a12+ag
and h(a) = a mod m = a mod 27 = ¢2P + r mod 2P = r, where

r= AQ\EIT. .. QQ\TQOV

If m = 2P, then h(k) is just the p lowest order bits of k&

. v

1T Auenoyp “X'g

100z ‘67 Y21

-

Multiplication method: an implementation (1)
Situation:

e word size of the machine is w-bits

e keys are binary numbers, fit into 1 word

e no multiplication of rational rational numbers

h(k)

N

/

ALienoyp "x°g

100Z ‘6T UPIeIN

\?E_Sﬁ:omﬁos method J
Use: h(k) = [m(kA mod 1)|, where kA mod 1 = ka — |kA|
Two steps:

1. Multiply k£ by A constant (0 < A < 1), and extract the
fractional part of kA

2. Then multiply value by m and take floor of result
Characteristics:
e Value of m is not critical

e We can choose m to make h-function easy to implement
Choose for m = 2P (bcz multiplication by m would correspond
to a simple left shifting of p positions, shifting instructions
available on most hardware)

(vV5-1)
2

/o Knuth suggests using A ~

/

1 Auenoyp “X'g

1007 ‘62 UoIeN

Qﬁzﬂm@_mnwﬂmﬁﬁ- methoed: an implementation (IT)

h(k)

Steps:

e 0 < A <1 and no multiplication of rational rational numbers
— use |A.2"]

e Multiply & and |A.2¥] — (each of w bits) yields a word of
2w-bits of value 2% 4 rq

e 7 is the fractional part of kA (approx)

o Multiplying by m = 2P corresponds to taking the p most
/ significant bits of ¢

~

/

o1 ALaenoyp "x'g

1007 ‘62 UoIeN

4 N

Multiplication method: an example

h(k) = [m(kAmod 1)]

Suppose k = 123456, m = 10000, A = 0.6180339887

decimal numbers

h(k) = [10000- (123456 -0.61803... mod 1)]
= 10000 - (76300.0041151... mod 1)]
= |41.151...mod 1)
= 41

Do exercise 12.3.4

\ /

[} ALienoyp "x°g

100Z ‘62 Y2IeIN

4 N

Universal hashing: principal

Let H be a finite set of hash functions that map a universe U of
keys into the range {0,1,2,... ,m — 1}

‘H is universal if for every pair of distinct key z,y, € U, the number
of hash functions h € H for which h(x) = h(y) is precisely |H|/m

that is, with a hash function randomly chosen from H, the chance
of collision between = and y when z # y is exactly 1/m, which is
exactly the chance of a collision if i(z) and h(y) are randomly
chosen from the set {0,1,2,... ,m — 1}

. /

e1 Auenoyp “X'€

100Z ‘6T UPIeIN

-

Universal hashing
Worst-case scenario:
e Malicious adversary chooses the keys to be hashed
o Bad choice of hashing, all n keys hash to the same slot

Average retrieval time deteriorates: ©(n)

Any fized hash function is vulnerable

Way out?
Choose a h-function that is random

independent of keys to be stored

The scheme is called universal hashing

N

yields good performance on average

no matter what keys are chosen by adversary

91 Auenoyp “X'g

100T ‘6T UPICIN

4 N

Thecrem 12.3: If h is chosen from a universal collection of
hash functions and is used to hash n keys into a table of size m,
where n < m, the expected number of collisions involving a
particular key £ is less than 1

1 Auenoyp “X'g

100T ‘6T U2IeIN

-

Universal hashing; principal

Select a hash function at random, at run time from a carefully
designed class of functions

Randomization guarantees
e that no single input will evoke worst-case behavior

e good average-case performance, no matter what keys are
provided as input

-

61 ALienoyp "x°g

100Z ‘62 Y2IeIN

\Huu.oom H =, {ha} is a universal class of hash functions J

Given z, y, two distinct keys, prove that h,(z) = he(y) with
probability 1/m
e Consider z, y, two distinct keys. For example, z¢ # o, and
some of the z;,y; can be the same

o \Naﬁ&v = \NQAQV = MMHQ a;Ti; = MMHQ a;Y; mod m
= aoTo + Dty @iTi = aoYo + Y_i_q a;y; mod m
= ao(zo — yo) = — i_; ai(z; — yi) mod m
but m is prime = (29 — yo) has an inverse for multiplication

modm (multiplication modm is a finite field, Galois field)
S ai(mi—y)

AHO‘“_\CV BOQ m

= ap =
e There are m” such values for ag

e 1 and y collide once for each value of such value of ag

/ = z and y collide with probability :HFHH =1/m m.mﬁ

LT ALienoyp "x°g

100z ‘67 Y21

-
-

4 N

Example of A universal class of hash functions

Principle

e Goal: Create a universal class of functions that hash a key into

a value between 1 and m-1

e Proposal: each function is defined for an index a, such that a is
as a sequence (ag,ay,... ,a,) where each a; <m
Each key = we receive is represented as a sequence
(zo,21,... ,2,) where each z; <m
The hash function is he(z) = >.._, a;z; mod m

7

Axremoyp “X'g

0¢

100Z ‘6T Y2ICIN

4 N

Open addressing

e All elements are stored in hash table
Each table entry contain either an element or NIL

o Search considers systematically (but not linearly) table slots

until element is found or it becomes clear element is not in table
e Sequence of slots to be examined is computed

e 1o lists, no elements stored outside table
= When the table is “filled up”, no element can be inserted
= Load factor a < 1

e Advantage: avoids pointers.
Extra memory freed by pointers can be used to increase the
number of slots in table

\ v

ST ALaenoyp “x'g

1007 ‘62 UYoIeN

-

/

—
o o . ° . mmu
kel

g oo Q = Zz2HHEPQ o3 Q = B

mmvﬂ%oLﬂqu%oqumqam
EEC B $EEES Jk8 E
8 » g] g s g ¢ o i)

3 o & T E s d~—~2 252 0 =

HmIJH ndn I.I.SOS MSS =] o)

L o0 & 88 5827 ~ 37 s &
55 5 J= o A ~3 & g

5 ® o & > » = oo g Q - [

aeulAw)oﬁ.wmnu“.TW(m.mV

mw.}a S - g p,_Q./.I_m.mqu c

o E & — 8 3 S = B 5 =]

quq I @ — WD 099 =.

5= Q8 ([S + . B 0 3

w1 e —~ = S dmm. I

m.[mHZxa -, E oo 1%

ELE 1Sy S g8 S8 3

= 3 s &% & Log s § - 8 o
7] = . = o, =

® & C & T o4 o8 g = o &
o0 S_ % - P8 E 40 a
gE = T o= SR} o, G & & o
o = S . @ 3 =}
[S =1 8 9 = = =h
g - g £ @ g @ =5 s
@ . - B e @ — B o
S ks = uWam =
=1 S] = 5 3 &
=] =3
=1 2 Iy © =4

o @ = 5 S e
~ E. o] o, pm =3
-+ 8 73} = =
<] o =+
= le] = m =
@ =} = = 3 e
@ &, < 1

-

1% ALienoyp "x°g

100Z ‘67 Y21

- N

Insertion in open addressing
Principle
e Successively examine or probe hash table until we find an
empty slot
e Slots are not visited linearly, ©(n) search time for empty slot,
positions probed are computed from key to be inserted
e Hash function includes the probe number i, h(k) — h(k,7)
h:Ux{0,1,2,... m—1} —{0,1,2,... ,m —1}

e For every key k, the probe sequence
(h(k,0),h(k,1),... ,h(k,m — 1)) must be a permutation of
(0,1,...,m — 1)) (so that every position is eventually
considered as a slot for a new key as table fills up)

. /

w
P
m \ J
.m. Searching in open addressing
Hash-Search (T, k) probes same sequence of slots that
Hash-Insert(T,k) examined when inserting the key
HasH-SEARCH(T,
1 i<0
2 repeat j
3 if T[j] = A
% 4 return ;
5 Pe—i+l
6 until 7[j] = NIL or { m
7 return NIL
Returns j if slot j contains key k, or NIL if key £ is not present in 7'
When search finds an empty slot, search stops (k would have been
£ inserted there and not later), assuming keys are not deleted from
m hash table
w
_A
Deletion in open addressing is difficult
Solution:
e When deleting a key from slot ¢, don’t put Nil, because we
o won’t be able to search for another key for which we probed
= slot %, found it busy. Instead mark slot with value Deleted
instead of Nil
e In this case, Hash-Search should keep looking when t when it
finds Deleted, while Hash-Search treats such a slot as if it was
empty
£
g

H44 Axremoyp “X'g

100T ‘6T U2ICIN

4 N

Insertion in open addressing
Assumption: elements are keys with no satellite data

HASH-INSERT(T, k

8 error “hash table overflow”

Each slot contains a key or Nil

. v

