ALienoyp "x°g

100Z ‘6 YoIeN

d N

Hash table: A generalization of notion of an ordinary array
Array uses direct addressing, which
o allows access to an arbitrary position in O(1)

e requires one position for every possible key

Hash table

e does not use key as array index, but computes array index from

key
e is advantageous when #keys actually stored « #keys possible
e uses an array of size proportional to # of keys stored

e object can be stored in slot itself (instead of pointer)

. /

ALienoyp “x'g

100Z ‘6 YoIBN

Hash tables

Textbook, Chapter 12, Sections 12.1, 12.2, 12.3

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/"choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444

N

ALaenoyp “x'g

100z ‘6 YoIeN

@ N

Direct-access tables= array, T[0,1,... ,m — 1]

Each element has a key drawn from U = {0,1,... ,m — 1}
Assumption: no two elements have the same key

e Slot k points to the element in set with key k

e When no element in set with key= k, T[k] = Nil

o Works well when U, universe of keys, is small

\ /

ALaenoyp “x'g

100Z ‘6 YoIeN

-

Dynamic set (i.e., dictionary) operations required by many
applications:

1. Insert
2. Search
3. Delete

— A hash table is an effective data structure

basic operations in O(1) on average

Worst case: as bad as a linked list (©(n))
In practice: extremely competitive (nearly constant)

-

basic operations in O(1) on average

ALienoyp "x°g

100Z ‘6 YoIeN

‘v

Direct-access table: stores element with key & in slot k&

rinciple

Hash table: stores element with key % in slot h(k)
h, hashing function, maps universe into slots
h:U—{0,1,...,m—1}
An element with key & hashes to slot h(k)

p v B
(universe of keys) "\ —

Collision:

two keys may hash to the same slot (when h not injective)

N

ALienoyp "x°g

100Z ‘6 YOI

-

Dicticnary operations

Direct-Address-Search (T k)
return T'[k]

Direct-Address-Insert (7, z)

return T[key[z]] < z

Direct-Address-Delete (T, x)
return T[key[z]] — Nil

— 0(1)

N

takes as input pointer to x, not the key

takes as input pointer to x, not the key

~

Trivial

/

Laenoyp “x'g

100Z ‘6 YoIeN

-

Avciding collisicn

Make h appear to be random: avoids or minimizes collisions
e h must be deterministic: given k, h(k) same

e Since U > m, no-collisions is impossible

Techniques
e Chaining

e Open addressing

-

ALaenoyp "x'g

100Z ‘6 UOIeN

-

Direct-access table
o When U is large, storing T of size U is impractical
e When k << U, lots of space wasted

— do not use a direct-access table
— use a hash table

Hash table
e Storage requirement can be reduced to O(k)

e Searching remains in O(1), however, in average

-

~

1T Auenoyp “X'g

100Z ‘6 Y2IeN

-

Analysis of hashing with chaining

Given a hash table T" with m slots storing n elements

Load factor for 7: average number of elements in a chain

= n
=

a < 1: on average, less than one element per slot
a = 1: on average, one element per slot
a > 1: on average, more than one element per slot

N

ALienoyp "x°g

\Oo:mmmos resoclution by chaining J

Chain elements that hash to the same slot in a linked list

U

p] 3 /,,,/
y " (universe of x,ov\mv\ ﬁﬁl\l‘ e
I {

ALaenoyp "x'g

¢l

100Z ‘6 YoIeN

-

Analysis of hashing with chaining

‘Worst-case:

All n keys hash to same slot, a list of length n
Time for searching: ©(n), plus time to compute h
— h-table not attractive

Average case:
Depends on how h-function distributes set of keys among m slots,

on average
1. Division method
2. Multiplication method
3. Universal hashing

For now, assume simple uniform hashing

-

© |/
\ b M < >k N[NI
. [
s > >y | =Ke |/
W
= Slot j is a pointer to the head of the list of all elements that hash
| toj
m /<<rm5 A such elements, slot j hashes to Nil \
w
<
2 . N
: Dictionary operations in collision resolution by chaining

0T

100T ‘6 421N

Chained-Hash-Search (T, k)
search for an element with key & in list T[h(k)]

Worst case: proportional to length of list

Chained-Hash-Insert (T, z)
insert at the head of list T'[h(key|x])]
Worst case: O(1)
Exercise 12.2-2

Chained-Hash-Delete (T, z)
delete z from list T[h(key[x])]
Worst case: O(1) if list is doubly linked
Singly-linked list: search for x predecessor to splice = out

Delete and search have same running time

To analyze hashing with chaining, examine search

\ /

Auenoyp “X'g

€I

100Z ‘6 Y2aeN

\mmgﬁ_m uniform hashing J
Assume:

e Compute h(k) and access slot is in O(1)

e Searching element of key k is linear in length of list T'[h(k)]

Question: What is the number of elements considered by search?
i.e., number of elements in list T'[h(k)] checked to see if their key is
equal to k

1. Search unsuccessful: no element in table has key k

2. Search successful: finds element in table with key k

Result: under assumption of uniform hashing, search is O(1 + «)

on average

@rmoadﬁ" 12.1 and 12.2 \

v
<
: N
g
g
g
Thecrem 12.2 In a hash table in which collisions are resolved
by chaining, a successful search takes time O(1 + «), on the
average, under the assumption of simple uniform hashing.
o
Proof
Assumptions:
o Secarched key equally likely to be in any of n keys stored
e Chained-hash-Insert inserts new element at end of list
g
3
&
©
g
S
w
.A\
Q
@ EHEsgHEgzH T O /
£ P! EXESFEEE 7 3 =
g Zm; mdm.ﬂ.nmoao[a
g + @ sl $EFISIER e Q + O
=+ *+ 4 0 2w X =
wie g = T regr 8 o~ 20
=+ | 3 o &g U@ oV =Y o = w
| o, = - —_ = a8 © =
o & = g2 g 5 °
Sy = 5 —+ = e @ 4 5 e
g SR e FEES = O
~— =+ @ N
|2 EEFEfg, &L g
[} le) D O e = N
® g w mE R @8 g
=] SI.I.dAon[.q.uc mvu
. RN] = @ =
= I8 a B =+ 4+ B wn
— + & 0 I eSO TE e |2
=N =% B o aen o @ 3 |5
e E o R0 =" g o -8
— = — — [=B 5 @
S @ 2 5o kB 7]
54+ 4+ + a R @
¥ ool T3 B © g B g E 5]
w 3 _.I. n — [as @ =1 -
= | wi.l 3 ~ o+ 5 0 6 w
Q < 3= 3 o B & = 4 jo3
2 W = :Zu < = @ I &
[— s = o =]
g S Uy 25288 5
&, = i 5w w B R =
=3 ol | | LoH .lmwm.e =} g
w 2 = B3 g2 g 80 b
g <3 3 s T g d g
3 e + &8 + e S @
1 — ~
e o - g S B o =
5o - o & e g
£ - w ® = =)
M 2] [e]
S

(
(
(
(

-

ALaenoyp "x'g

4!

100Z ‘6 YoIeN

4 N

Theorem 12.1 In a hash table in which collisions are resolved
by chaining, an unsuccessful search takes time ©(1 +), on the
average, under the assumption of simple uniform hashing.

Proof: Simple uniform hashing = any key £ is equally likely to
hash to any of the m slots

The average time to search unsuccessfully for a key k& = average
time to search to the end of one of the m lists

Average length of such a list is « = n/m

= expected number of elements examined is «

= Total time required = ©(a) + time for computing h(k)

= Total time required = O(1 + «)

\ /

ALienoyp "x°g

LT

100Z ‘6 YoIeN

4 N

Interpretation of Theorem 2.1 and 2.2
If the number of slots, m, is at least proportional to number of
elements in table, n, we have n = O(m) = a = % =0(1)

Thus searching takes constant time on average.

Remember:
Insertion is in O(1), Deletion is in O(1) (doubly-linked lists)

All dictionary operations can be supported in O(1)

N

/

w
b
m \ J
Z | Hash functions
1. Division method
2. Multiplication method
3. Universal hashing
= | Assumption: keys are natural numbers (e N)
If keys € N, find a way to express them as such
Example: strings can be interpreted by interpreting each character
as an integer in notation radix-128, using the ASCII character set
Tllustration: pt can be interpreted as (112.128) +116 = 14452,
g
3 since p = 112 and t = 116 in the ASCII character set
=
<
£ \Umimmo: method /
h(k) =k modm
Example: m =12 and k =100 = h(k) =4
e Quick hash function
] e Avoid m power of 2
If m = 27, then h(k) is just the p lowest order bits of k
Unless P(k) makes all low-order p-bits patterns equally likely
e Avoid powers of 10 if keys are decimal numbers (as hash
function does not depend on all the decimal digits of k)
e Good values for m are primes not too close to exact powers of 2
g
m Example: n = 2000 character strings, each character has 8 bits
£ /HH, « = 3 then choose m = 701 (prime not too close to a power of wv\

Axremoyp “X'g

8T

100Z ‘6 UoIeN

\ﬁmmr functicns
A good hash function
e can be computed quickly

e satisfies (approx.tely) the simple uniform hashing assumption:
each key is equally likely to hash to any of the m slots

Formally:

Assume each key is drawn independently from U with probability
distribution P

P(k) is the probability that & is drawn

Simple uniform hashing =

MU muQ&HFV for 5=0,1,... ,m—1

m
kih(k)=j

/Ioémgﬁ P is usually unknown

~

ALienoyp "x°g

4

100Z ‘6 Y2IeN

4 N

Universal hashing: principal (I)

Select a hash function at random, at run time from a carefully
designed class of functions

Randomization guarantees
e that no single input will evoke worst-case behavior

e good average-case performance, no matter what keys are
provided as input

. /

12 Auenoyp “X'g

100Z ‘6 UoIeN

-

Multiplication methed
Two steps:

1. Multiply k£ by A constant (0 < A < 1), and extract the
fractional part of kA

2. Then multiply value but m and take floor of result

h(k) = |m(kA mod 1)]
where kA mod 1 = ka — |kA]
e Value of m is not critical

e We can choose m to make h-function easy to implement

N

/

ALaenoyp "x'g

14

100Z ‘6 YoIeN

4 N

Universal hashing: principal (II)

Let H be a finite set of hash functions that map a universe U of
keys into the range {0,1,2,... ,m — 1}

‘H is universal if for every pair of distinct key x,y, € U, the number
of hash functions h € H for which h(z) = h(y) is precisely |H|/m

that is, with a hash function randomly chosen from H, the chance
of collision between = and y when x # y is exactly 1/m, which is
exactly the chance of a collision if h(z) and h(y) are randomly
chosen from the set {0,1,2,... ,m — 1}

\ /

H44 Auenoyp “X'g

100Z ‘6 UOIeN

-

Universal hashing

Worst-case scenario:

e Malicious adversary chooses the keys to be hashed

e Bad choice of hashing, all n keys hash to the same slot

Average retrieval time deteriorates: ©(n)
Any fized hash function is vulnerable

Way out? Choose a h-function that is random, independent of
keys to be stored

The scheme is called universal hashing

-

yields good performance on average

no matter what keys are chosen by adversary

~

/

