We can prove that:

- **Comparison sorts**
 - The comparison between the input elements is based on their order.

Interview common properties

- Average-case: worst-case
- Average-case: best-case
- Average-case: random-case

O(n log n)

Exampl

- Every element **x** can be placed directly in its position in the sorted array, assuming that each input element is unique before moving into the new array.

Counter sort

Example

- Given an array of elements, the counter sort algorithm can be used to sort the elements in ascending order.

Non-comparison sort algorithms

- When the time complexity is considered, the **Quick sort** algorithm offers a more efficient solution compared to simple sorting algorithms.

Notes:

- Keep in mind that for some value cases, it might be necessary to use different sorting techniques.

Textbook:

Chapter 8, Sections 9.2 and 9.3

CSE 310:

Data Structures and Algorithms

Instructor:

For any question, feel free to ask.
Counting sort

Input: Array $A[1..n]$, $\text{length}(A) = n$
Output: Array $B[1..n]$
Temporary working storage: Array $C[1..n]$

Counting-Sort($A[1..n]$)
1. for i from 1 to n do $C[i] = 0$
2. for j from 1 to $\text{length}(A)$ do $C[A[j]]++$
3. for i from 1 to n do $B[i] = C[i]$
4. for i from 1 to n do $B[i] = B[i] - C[i]$

Correctness:
Since $C[i]$ stores the number of elements less than or equal to i, we have $B[i] + C[i] = i$ for all i.

Running time:
The algorithm requires $O(n + \text{max}(A))$ time.

Counting sort is a stable sort, meaning that it preserves the relative order of equal elements.

Since some x may not be different, need to decrement $C[A[j]]$ when placing an $A[j]$ into B.

Counting sort: shaded

Exercise 9.2-1

Input: an array of numbers

Numbers with the same value appear in the same order as in A.

Counting sort: shaded

Exercise 9.2-1

Running time: depends on intermediate sorting algorithm

Correctness proof by induction on common partial sorted

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>B</td>
<td>77</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>C</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>D</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>E</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>F</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>G</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>H</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

For i = 1 to n

Each of d[i] lower-order digits d[i-1…0] digit.

Input: A, array of elements

Example: sort records keyed by multiple fields

Header sort is stable

Digit sorting must be stable

A...and the numbers are sorted

1. A record from Z until last digit
2. A record to most least significant digit
3. A record to least most significant digit

With an stable sorting algorithm

Counting sort of d-digit Header sort

Counting sort
Sorting in Linear Time

Textbook, Chapter 9, Sections 9.2 and 9.3

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444

Running time of Radixsort:

When each digit is in the range of 1 to k (k not too large)
Each Pass over n d-digit numbers is $\Theta(n+k)$
d passes: $\Theta(d(n+k))$

Unlike Quicksort and Insertsort, Counting sort does not sort in place.

When space is at stake, use Quicksort.
Non-comparison sort algorithms

- Counting sort: assumes something about input $O(n)$, stable
- Radix sort, $\Theta(dn + kd)$
 When d constant, $k = O(n) \Rightarrow$ linear time
- Bucket sort: assumes something about input $O(n)$

$O(n \lg n)$:
- Mergesort, heapsort: worst-case
- Quicksort: average-case

$\Omega(n \lg n)$:
- Mergesort, heapsort, quicksort

Interesting common property: sorted order is based only on comparisons between the input elements

\rightarrow Comparison sorts algorithms

We can prove that: $\text{any comparison sort algorithm is in } \Omega(n \lg n)$

(Section 1.1)
Counting sort

Input: Array $A[1 \ldots n]$, $\text{length}[A] = n$
Output: Array $B[1 \ldots n]$
Temporary working storage: Array $C[1 \ldots 2]$

```
COUNTING-SORT(A, B, k)
1   for i ← 1 to k
2     do $C[i] \leftarrow 0$
3   for j ← 1 to $\text{length}[A]$
4     do $C[A[j]] \leftarrow C[A[j]] + 1$
5     ▷ $C[i]$ now contains the number of elements equal to $i$.
6   for i ← 2 to k
7     do $C[i] \leftarrow C[i] + C[i - 1]$
8     ▷ $C[i]$ now contains the number of elements less than or equal to $i$.
9   for j ← $\text{length}[A]$ downto 1
10   do $B[C[A[j]]] \leftarrow A[j]$
11   $C[A[j]] \leftarrow C[A[j]] - 1$
```

Counting sort

Assumes that each of the n input element is an integer in the range of 1 to k

When $k = O(n)$, counting sort is linear

Principle

- Determine for each input element x, the number of elements less than x
- Every element x can be placed directly in its position in output array

Example

If $\exists 17$ elements less than x, x must be in position 18

Slight modification for same value cases
Counting sort

\textbf{Counting-Sort}(A, B, k)
1 \hspace{1em} \textbf{for } i \leftarrow 1 \textbf{ to } k \\
2 \hspace{1em} \textbf{do } C[i] \leftarrow 0 \\
3 \hspace{1em} \textbf{for } j \leftarrow 1 \textbf{ to } \text{length}[A] \\
4 \hspace{2em} \textbf{do } C[A[j]] \leftarrow C[A[j]] + 1 \\
5 \hspace{2em} \triangleright \ C[i] \text{ now contains the number of elements equal to } i. \\
6 \hspace{1em} \textbf{for } i \leftarrow 2 \textbf{ to } k \\
7 \hspace{2em} \textbf{do } C[i] \leftarrow C[i] + C[i - 1] \\
8 \hspace{2em} \triangleright \ C[i] \text{ now contains the number of elements less than or equal to } i. \\
9 \hspace{1em} \textbf{for } j \leftarrow \text{length}[A] \textbf{ downto } 1 \\
10 \hspace{2em} \textbf{do } B[C[A[j]]] \leftarrow A[j] \\
11 \hspace{2em} C[A[j]] \leftarrow C[A[j]] - 1

Lines 9–11: \(A[j]\) is place in correct position in \(B\)

correct final position for \(A[j]\) is \(C[A[j]]\)

Since some \(x\) may not be different,

need to decrement \(C[A[j]]\) when placing an \(A[j]\) into \(B\)

\[\]
Counting sort

```
COUNTING-SORT(A, B, k)
1 for i ← 1 to k
2 do C[i] ← 0
3 for j ← 1 to length[A]
4 do C[A[j]] ← C[A[j]] + 1
5 ▷ C[i] now contains the number of elements equal to i.
6 for i ← 2 to k
7 do C[i] ← C[i] + C[i - 1]
8 ▷ C[i] now contains the number of elements less than or equal to i.
9 for j ← length[A] downto 1
11 C[A[j]] ← C[A[j]] - 1
```

Lines 1–2: $O(k)$
Lines 3–4: $O(n)$
Lines 6–7: $O(k)$
Lines 9–11: $O(n)$

Counting sort: $O(k + n)$

Usually, used with $k = O(n)$, this in $O(n)$
Radix sort

Given numbers of d-digit, Radix-sort:
1. Starts with the least significant digit first
2. Sorts the numbers according this digit
 using a stable sorting algorithm
3. Moves to the next least-significant digit
4. Repeats from 2, until last digit d
5. .. and the numbers are sorted!

Digit sorting must be stable
Radix sort is stable

Example: sort records by dates (years, months, and days)
General use: sort records keyed by multiple fields

Counting sort: stable

Numbers with the same value appear in B in same order as in A

Important in presence of satellite data

Exercise: 9.2-1
Try again in 9.2-3
Running time: of Radixsort

When each digit is in the range of 1 to k (k not too large)

Use Counting sort

Each pass over n d-digit numbers is $\Theta(n + k)$

d-passes: $\Theta(dn + kd)$

When d constant and $k = O(n)$, Radixsort is linear!!

Unlike Quicksort and Insertionsort, Countingsort does **not** sort in place

When space is at stake, use Quicksort

Input: A, array of n elements, each of d digits: 1 lowest-order digit, d highest-order digit

For $i \leftarrow 1$ to d

do use a stable sort to sort array A on digit i

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>329</td>
<td>720</td>
<td>720</td>
<td>329</td>
</tr>
<tr>
<td>457</td>
<td>355</td>
<td>329</td>
<td>355</td>
</tr>
<tr>
<td>657</td>
<td>436</td>
<td>436</td>
<td>436</td>
</tr>
<tr>
<td>839</td>
<td>457</td>
<td>839</td>
<td>457</td>
</tr>
<tr>
<td>436</td>
<td>657</td>
<td>355</td>
<td>657</td>
</tr>
<tr>
<td>720</td>
<td>329</td>
<td>457</td>
<td>720</td>
</tr>
<tr>
<td>355</td>
<td>839</td>
<td>657</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correctness: proof by induction on column being sorted

Running time: depends on intermediate sorting algorithm

Exercise: 9.3-1