ALienoyp "x°g

100z ‘¢ Y21

4 N

Non-compariscn sort algorithms

e Counting sort: assumes something about input
O(n), stable

e Radix sort, ©(dn + kd)
When d constant, £ = O(n) = linear time

o Bucket sort: assumes something about input

O(n)

. /

Auenoyp “X'g

100z ‘g YoIeN

Scrting in Linear Time

Textbook, Chapter 9, Sections 9.2 and 9.3

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/"choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444

N

ALienoyp “x'g

100z ‘¢ YoIeN

4 N

Counting sort

Assumes that each of the n input element is an integer in the range
of 1to k

When k& = O(n), counting sort is linear
Principle

e Determine for each input element x, the number of elements
less than z

e Every element x can be placed directly in its position in output

array

Example
If 3 17 elements less than z, x must be in position 18

Slight modification for same value cases

\ /

ALaenoyp "x'g

100z ‘C YoIeN

-

O(nlgn):
o Mergesort, heapsort: worst-case
e quicksort: average-case
Q(nlgn):
e Mergesort, heapsort, quicksort
Interesting common property: sorted order is based only on
comparisons between the input elements

— Comparison sorts algorithms

‘We can prove that:

-

any comparison sort algorithm is in Q(nlgn)

(Section 1.1)

/

ALienoyp "x°g

100z ‘¢ YoIeN

4 N

Ccunting sort

COUNTING-SORT(A, B, k)
1 fori—1tok

2 do C[i]—0

3 for j — 1 to length[A]

4 do C[A[j]] — ClA[N] + 1

5 1 C[i] now contains the number of elements equal to i.

6 fori—2tok

7 do C[i]— C[i]1+C[i - 1]

8 > C[i] now contains the number of elements less than or equal to .

9 for j — length[A] downto |

0 do BIC[AU — ALj]

1 ClALT) — CIALN - 1

Lines 9-11: A[j] is place in correct position in B
correct final position for A[j] is C[A[j]]

Since some z may not be different,
need to decrement C[A[j]] when placing an A[j] into B

\ v

ALienoyp "x°g

1007 ‘g YoIeN

Ccunting sort

Input: Array A[l...n],length[A] =n
Output: Array B[l...n]
Temporary working storage: Array C[1...2]

COUNTING-SORT(A, B, k)
1 fori—1tok

2 do C[i]<0

3 for j « 1 to length[A]

4 do C[A[]]] < ClAIT + 1

5 1 C[i] now contains the number of elements equal to i.

6 fori—2tok

7 do C[i]— C[i]+ C[i = 1]

8 1 C[i] now contains the number of elements less than or equal to i.

9 for j «— length[A] downto |

0 do B[C[A[j]N] — A[j]

1 ClA[j1] < ClAUNT -1

—_——

o

ALaenoyp "x'g

100z ‘C YoIeN

1 2.3 4.5 6 138

alalelal1]s]a]1]4]
1 23456

c[2]o]2]3]0]1

(a) (b) (c)

ALaenoyp "x'g

1007 ‘S YoIeN

\Oossﬂsm sort /

COUNTING-SORT(A, B, k)

1 fori—1tok
2 do C[i]—0

3 for j — 1 to length[A]

4 do C[A[j]] — C[A[j]] + 1

5 1 C[i] now contains the number of elements equal to i.

6 fori—2tok

7 do C[i] — C[i]+ C[i - 1]

8 > C[i] now contains the number of elements less than or equal to i.
9 for j — length[A] downto 1

0 do B[CA[1)] — 4[]

1 ClAN = ClApI - 1

Lines 1-2: initialization
Lines 3-4: inspect each element, get values of C/i]
C[¢]: number of elements equal to 7
Lines 6-7: number of elements < ¢ (a running sum of C)

/Ezmm 9-11: A[j] is place in correct position in B \

ALienoyp "x°g

1007 ‘g UYoIeN

-

Counting sort

COUNTING-SORT(A, B, k)
1 fori—1tok

2 do C[i] —0
3 for j — 1 to length[A]
4 do CA[j]] = ClALN+1
5 B C[i] now contains the number of elements equal to /.
6 fori—2tok

7 do C[i] — C[i]+ C[i - 1]
8

9

10

1

> C[i] now contains the number of elements less than or equal to i.
] downt

for j «— lengi
do B[C[A
ClAN = Cl4

Ezmmﬂwm“OQ&
Lines 3 4: O(n)

Lines 6-7: O(k)

Lines 9-11: O(n)

Counting sort: O(k +n)

Usually, used with k£ = O(n), this in O(n)

N

v
¢ [Radix sort
Given numbers of d-digit, Radix-sort:
1. Starts with the least significant digit first
2. Sorts the numbers according this digit
using a stable sorting algorithm
= 3. Moves to the next least-significant digit
4. Repeats from 2, until last digit d
5. .. and the numbers are sorted!
Digit sorting must be stable
Radix sort is stable
B
g Example: sort records by dates (years, months, and days)
5 Gm:mwm_ use: sort records keyed by multiple fields
w
<
g h&.ﬁﬂn" A, array of n elements,
m. each of d digits: 1 lowest-order digit, d highest-order digit
Fori—1tod
do use a stable sort to sort array A on digit ¢
329 720 720 329
457 355 329 355
657 436 436 436
= 839 = 457 = 839 = 457
w0 436 657 355 657
720 329 457 720
355 839 657 839
i i i
Correctness: proof by induction on column being sorted
£ Running time: depends on intermediate sorting algorithm
¥ @xmanmmm” 9.3-1

Axremoyp “X'g

0T

100z ‘g YoIeN

-

Counting sort: stable
Numbers with the same value appear in B in same order as in A
Important in presence of satellite data

Exercise: 9.2-1

Try again in 9.2-3

-

-

Running time: of Radixsort

Kanoyp X €

When each digit is in the range of 1 to k (k not too large)
Use Counting sort
Each pass over n d-digit numbers is ©(n + k)
d-passes: ©(dn + kd)
When d constant and k& = O(n), Radixsort is linear!!

€I

£
= <t
N 2 N 3
= 5 ©)
.= o 5 _
) = _W..c Q_u — n Unlike Quicksort and Insertionsort,
m < A - in - Countingsort does not sort in place
™ S oL
m nm NJ _m m /A.IU 2 When space is at stake, use Quicksort
- o - i
® m %] /S\ % o @
o} A3 o 2 o = g /
n O =) o Wu - 2
o p] N -~ m .n_l_b —_— =]
= S OS¢ 233
(@] ()
PN 9T &
n — = =
o Q +~ —
g 0O g g
h n g
a0 oh d .2 R
< 8 4 > 2 o
i= = == 80 @
+ o T3 2850
[~ D : v L ©
o 4 O = >
n S 5 8 A4 H
@]] m o
Q . 0}
o] 2
b} = ..m
= G

CSCE310

N /

B.Y. Choueiry H March 5, 2001

Arenoyp "X'd

/

Non-comparison sort algorithms

e Counting sort: assumes something about input
O(n), stable

w
e Radix sort, O(dn + kd)
When d constant, &k = O(n) = linear time
e Bucket sort: assumes something about input
O(n)
=
&
w
<
g O(nlgn):
e Mergesort, heapsort: worst-case
e quicksort: average-case
Q(nlgn):
e Mergesort, heapsort, quicksort
[\
Interesting common property: sorted order is based only on
comparisons between the input elements
— Comparison sorts algorithms
= | We can prove that: (Section 1.1)
f: any comparison sort algorithm is in Q(nlgn) /

Arenoyp "X'd

1002 ‘G Yyore|N

Counting sort \

Input: Array A[l...n],length[A] =n
Output: Array B[l...n]
Temporary working storage: Array C|1...2]

COUNTING-SORT(A4, B, k)

1 fori—1tok
2 do C[i] <0

3 for j — | to length[A]

4 do C[A[j]] — ClA[/]] +1

5 1 C[i] now contains the number of elements equal to 7.
6 fori—2tok

7 do C[i] — C[i]+ C[i — 1]

8 > C[i] now contains the number of elements less than or equal to 7.
9 for j — length[A)] downto 1

10 do BIC[AU — ALj]

11 ClAUN < Cl4al -1

o /

Anenoyp "X°d

100% ‘G yodaeny

4)

Counting sort

Assumes that each of the n input element is an integer in the range
of 1to k

When k& = O(n), counting sort is linear
Principle

e Determine for each input element x, the number of elements
less than x

e Every element x can be placed directly in its position in output

array

Example

If 34 17 elements less than z, x must be in position 18

Slight modification for same value cases

o /

Arenoyp "X'd

-

Counting sort

COUNTING-SORT(4, B, k)

1 fori—1tok

2 do C[i] — 0

3 for j — 1 to length[A]

4 do C[A[j]] — C[A[j]] + 1

5 p C[i] now contains the number of elements equal to /.

6 fori—2tok

7 do C[i] — C[i]+ C[i — 1]
~ 8 > C[i] now contains the number of elements less than or equal to 7.

9 for j « length[A] downto 1

10 do B[C[A[/]]] — A[J]

11 ClA[] < Cl4AUN - 1

Lines 9-11: A[j] is place in correct position in B

correct final position for A[j] is C[A[j]]
- Since some x may not be different,
S_ need to decrement C[A[j]] when placing an A[j] into B
AN /
w
< / \
O .
: [Counting sort
g COUNTING-SORT(A, B, k)

1002 ‘G YyoIe|N

1 fori—1tok

2 do C[i] — 0

3 for j — 1 to length[A]

4 do C[A[j]] — ClA + 1

5 1 C[i] now contains the number of elements equal to /.

6 fori—2tok

7 do C[i] — C[i1+C[i - 1]

8 > C[i] now contains the number of elements less than or equal to i.

9 for j «— length[A] downto 1

10 do B[C[A[j1N] — A[j]

11 ClA[]] < CTALU = 1

Lines 1-2: initialization

Lines 3—4: inspect each element, get values of Ci]
C[i]: number of elements equal to ¢

Lines 6—7: number of elements < i (a running sum of C)

\Lines 9-11: A[j] is place in correct position in B

/

g)

Counting sort

COUNTING-SORT(A4, B, k)
1 fori—1tok

2 do C[i]<0

3 for j — | to length[A]

4 do C[A[j]] — C[A[/]] + 1

5 > C[i] now contains the number of elements equal to /.

6 fori—2tok

7

8

9

0

1

Aienoyp "x°d

do C[i] — C[i]+ C[i - 1]
> C[i] now contains the number of elements less than or equal to i.
for j — length[A] downto |

© 1 do B[C[A[j]]] — ALj]
1 ClAUN = Cl4T -1
Lines 1-2: O(k)
Lines 3-4: O(n)
Lines 6-7: O(k)
Lines 9-11: O(n)
= | Counting sort: O(k +n)
> | Usually, used with k£ = O(n), this in O(n)
w
<
Q
g
1 2 3 4 5 6 7 8
Al316|4|1‘3|4llm 1 2 3 4.5 6
12 3.4 5 6 c[2]2]a]7]7]s] I 2 3 4.5 6
c[2]o2]3]o]1] c[2]2]4]e]7]s8]
0 (a) (b) (c)

1 2 3 4 5 6 7 8
gl1[1]3]3]af4]a]6]

1 2 3 4 5 6 1

Chi2|;t|617|s| c[1[2[4]s]7

(d) (e) (f)

100z ‘G Yo2IeN

11 Anenoyp "X°d

100% ‘G ydaen

/Radix sort

Given numbers of d-digit, Radix-sort:
1. Starts with the least significant digit first

2. Sorts the numbers according this digit
using a stable sorting algorithm

3. Moves to the next least-significant digit
4. Repeats from 2, until last digit d
5. .. and the numbers are sorted!

Digit sorting must be stable
Radix sort is stable

Example: sort records by dates (years, months, and days)

{}eneral use: sort records keyed by multiple fields

/

Anenoyp "X°d

0I1

100% ‘G ydaeny

/

Counting sort: stable
Numbers with the same value appear in B in same order as in A

Important in presence of satellite data

Exercise: 9.2-1
Try again in 9.2-3

_

~

Arenoyp "X'd

€l

100Z ‘G yoae|N

/

Running time: of Radixsort

When each digit is in the range of 1 to k& (k not too large)
Use Counting sort
Each pass over n d-digit numbers is O(n + k)
d-passes: O(dn + kd)
When d constant and k = O(n), Radixsort is linear!!

Unlike Quicksort and Insertionsort,

Countingsort does not sort in place

When space is at stake, use Quicksort

_

Anenoyp "X°d

¢l

100% ‘G ydaeny

ﬁnput: A, array of n elements,
each of d digits: 1 lowest-order digit, d highest-order digit

For i—1tod
do use a stable sort to sort array A on digit ¢

329 720 720 329
457 355 329 355
657 436 436 436
839 = 457 = 839 = 457
436 657 355 657
720 329 457 720
355 839 657 839
i 1 T

Correctness: proof by induction on column being sorted
Running time: depends on intermediate sorting algorithm

@xercise: 9.3-1

