CSCE310 Spring 2001

Solutions to Homework 5

Acknowledgments and disclaimer:
Some material is taken from notes by Dr. Cusack. These notes are made available as a courtesy of the TAs and instructor. They are not guaranteed to be error-free or the most accurate, efficient or detailed. Feel free to notify the authors of bugs/improvements. No ‘bonus’ will be awarded.

Page 240, Exercise 12.4-4

	Function
	#probes
	½
	¾
	7/8

	Successful search
	1/1-(
	2
	4
	8

	Unsuccessful search
	1/(ln(1/1-() + 1/(
	3.339
	3.18
	3.51

Page 246, Exercise 13.1.2

The heap property: For every node x in a heap (except the root, which has no parent) key(Parent(x)) (key(x), i.e. no node has a key value larger than its parent.

The binary search tree property: For every node x in a binary search tree, key(y) (key(x) if y is a node in the left subtree of x and key(x) (key(y) if y is a node in the right subtree of x.

With the binary search tree, an ordering of the keys is defined, and finding a node with a particular key can be done quickly, O(h). With the heap property, only a vague ordering s defined, and finding a node with a particular key is not efficient.

The heap property cannot be used to print out the keys in sorted order in linear time. Although the largest element is known to be at the root, there are 2 possibilities for where the second largest is, 5 possibilities for where the third largest is (given the second), etc. The smallest n/2 elements of the can heap can be almost anywhere in the heap, in no particular order. In particular, the smallest element can be in any of the leaf nodes. The most efficient way to print the heys in order is to ‘remove’ the largest element from the heap until the heap is empty. This is heapsort, which is in O(n lgn).

Page 254, Exercise 13.3-6

Deletion is not commutative, as the following examples demonstrate:

· The key of the root is 2, the left child of 2 is 1 and the right child of 2 is 4.

· 1 has no children.

· The child of 4 is 3, and 4 has no right child.

Case 1: Try to delete 1 first, then 2.

Case 2: Then try to delete 2 first, then 1.

The two operations yield different trees.

In case1, we have 4 as the root, 3 is its left child, and 4 has no right child.

In case 2, we have 3 as root, it has no left child, 4 is its right child and 4 has no children.

Page 308, Exercise 16.1-1

 2010

1655
1950

 405 2430 1770

330
330
930
1860

 150
 360 180 3000 1500

0
0
0
0
0
0

So, the optimal parenthesization is ((A1 A2)((A3 A4)(A5 A6))) and the minimal cost is 2010.

Page 309, Exercise 16.1-3

Each time the l-loop executes, the i-loop executes n-l+1 times.

Each time the i-loop executes, the k-loop executes j-i = l –1 times, each time referencing m twice. Thus the total number of times m is referenced is (nl=2 (n-l+1)(l-1)2= 2(n-1l=1 (n-l)l= 2(n-1l=1nl-l2= 2(n-1l=1n l- 2(n-1l=1l2= 2 n(n-1)n/2 – 2(n-1)n(2n-1)/6 = n3 – n2 – (2n3 – 3n2 + n)/3 = (n3 – n)/3.
Page 314, Exercise 16.2-3

1…16 is divided into 1…8 and 9…16

1…8 is divided into 1…4 and 5…8 etc.

etc.

9…16 is divided into 9…12 and 13…6

etc.

No subproblem is visited twice. Every subproblem is visited exactly once. There are no overlapping subproblems. Memoization will not help.

