ALienoyp "x'g

1007 ‘€7 £1eniqeg

Heapsort (IT)

Textbook, Chapter 7

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/"choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444

N

w
= \ J
£ Heapsort: Example A = (4,1,3,2,16,9, 10, 14,8, 7)
3
g
<
16 14 10)
i3 10 8 10 8 9
3 7 (9 3 4 7 (9 3 4 D QA
HIOXE 2 (D @)0 ®
(b) ¢
9 8 o)
@ 8 G 7 3 3
4 DIC o) 4 2) (1 i ® 1 2@ 9
1 1 ds ® ,
IC] © 0}
4 q 2
. 2 3 3 i 1
W i D ® ® ® 5 ® ® 5
,m 10 (13 19 10 3 1 10 19 @6
N (h
@
2
w
<
: N
g
g
<
Heapsort: Example A = (4,1,3,2,16,9,10,14,8,7) (cont’)
>N
1 — —
Al1]2]3]4 , 16|
® 3 k) | 7[8]9[10]14]16
@ @ ® o
1) 19 (k)
)
o
z
g
H
<
o
@
2\ J
g
=

ALaenoyp "x'g

100z ‘€7 £1eniqag

-

Heapscrt: Principle and algorithm
Input: Array A[l...n|, where n = length[A]

1. Build a heap out of the array
the maximum element will be in A[1], it should be last!!

2. Exchange A[1] with A[n]
3. Reset heap size to (n — 1)

4. Heapify A[l...(n — 1)], repeat... down to a heap of size 2

HEAPSORT(A)
BuiLD-HEAP(A
for i — lengt}

1

2 downto 2
3 do exchange
4

]~ A4

heap-size «
w Iﬂ,:._j;.?

Auenoyp “X'g

T00Z ‘€T Areniqag

(N

Pricrity queue: Applications

1. Job scheduling on a shared resource (e.g., computer)
Priority queue keeps track of jobs and their relative importance.
Insert allows us to add new jobs at any time
Extract-Max selects highest priority jobs when current job is
finished /interrupted

[\

. Event-driven simulator
Queue of events to be simulated, each has occurrence time —
key value
Occurrence of event causes other events to be simulated in
future — Insert Extract-Min and Minimum instead of

Extract-Max and Maximum

Implementation — a heap

ALaenoyp "x°g

100Z ‘ez L1eniqag

-

N

Heapsort: Complexity
For an array A of size n

Heapsort: Utility

e Build-Heap is called once, its complexity id O(n)
e Heapify is called n — 1 times, its complexity is O(lgn)

e Complexity of Heapsort is O(n + (n — 1)Ign) = O(nlgn)

e Heapsort is an excellent algorithm, however Quicksort is

better in practice

e Heap data structure has enormous utility
e.g., efficient priority queue

Laenoyp “x'g

100z ‘€7 £1eniqag

4 N

Heap-Extract-Max(A)
If heap-size[A] < 1

then error “heap underflow”
max «— A[l]
A[l] « Alheap-size[A]]
heap-size[A] < heap-size[A] — 1
Heapify(A, 1)
return mazx

— Returns A[1]

— Places the last element of the heap in A[1]

— Decrements size of heap

— Heapifies the array

— Running time is in O(lgn) (constant effort and 1 heapify)

\ /

ALaenoyp "x'g

T00Z ‘gz Lieniqag

-

-

Priority queue as a data structure

e Data structure for maintaining a set S of elements, each with a
value called key

e Supports operations:
Insert(S,z) (ie., S — SU{z})
Maximum(S) returns element of S with largest key
Extract-Max(S) removes and returns the element of S with
largest key

/

1T Auenoyp “X'g

1007 ‘€7 £1eniqeg

4 N

Heap as a priority queue

For any set S of n elements:
e Heap-Maximum(A) is in ©(1)
e Heap-Extract-Max(A) is in O(Ign)

e Heap-Insert(A,key) is in O(lgn)

. /

ALienoyp "x°g

1007 ‘€7 £1eniqeg

-

Heap-Insert(A, key)

heap-size[A] < heap-size[A] + 1
i < heap-size[A]
while ¢ > 1 and A[Parent(i)] < key
do A[i] — A[Parent(i)]
i < Parent(i)
Ali] — key

— First expands the heap by adding 1 new leaf
— Then traverses path from new leaf to root to find

a proper place for the new element

N

ALaenoyp "x'g

¢l

100z ‘€7 £1eniqag

4 N

Bubble-sort Notes of Dr. Cusack

o Go through the list in order, swapping two elements if their
keys are out of order

e Repeat until no swaps are performed. The list is sorted
e 1 passes suffice
e Similar to Insertion-sort, but has lots of swaps

Bubble-Sort (A)
For i — n — 1 downto 1
Forj —1to1
When A[j — 1] > A[j], Alj — 1] < A[j]

\ v

ALaenoyp "x'g

0T

100z ‘€7 £1eniqag

-

Heap-Insert(A, key): Example
key =15

[1 10 15) Yo
X 3L

Running time is O(lgn), since path from new leaf to root has

length lgn

-

ALienoyp "x°g

€I

1007 ‘€7 £1eniqeg

-

Name

Upper bound Lower bound Tight bound

Selection-sort
Insertion-sort
Bubble-sort
Merge-sort
Heap-sort
Quick-sort

O(n?)
O(n?)
O(n?)

O(nlgn)
O(n?)

Q(n)

Q(nlgn)

O(nlgn)

N

