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Awmsmﬂv\v Heap: Array that can be viewed as a complete
binary tree

12345678 910

(e[ te[io[eT7 o] 324 ]

(b)

e Node in the tree ~» element in array storing same value

e Tree complete: filled on all levels, except possibly lowest level
(from left up to a point)

o Ais the array, heap — size[A], A[1...length[A]],
heap — size[A] < length[A], elements in A beyond

Alheap — size[A]] are not elements of the heap
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Heapsort

Textbook: Chapter 7, Section 7.1, 7.2 and 7.3

CSCE310: Data Structures and Algorithms
Www.cse.unl.edu/"choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444
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e Root of tree is A[1]

e Node index i, indices of parent/children: Parent(i), Left(i),
and Right(i)

e Index of Parent(i) is /2]
e Index of left child, Left(i) is 24
o Index of right child, Right(i) is 2i + 1

e Binary representation: shift left one bit (+ one), shift right one
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e Insertion sort v
Sorts in Q(n), O(n?)
Sorts in place, in array

e Merge-sort Vv
Sorts ©(nlgn)

Uses space, external to array

e Heapsort, —
Sorts O(nlgn)
Sorts in place, in array
Constant number of array elements stored outside input array
at any time
Uses heap «—— new data structure
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Five basic proccedures
1. Heapify maintains heap property
runs in O(lgn)
2. Build-Heap produces a heap from an unordered input array
linear in time
3. Heapsort sorts an array in place
runs in O(nlgn)

4. Extract-Max and 5. Insert allow heap to be used as priority
queue
run in O(lgn)
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e Heap property: Vi, A[Parent(i)] > A[i], except root
Value of a node at most value of its parent

e Largest element in a heap is stored at the root

e Subtrees rooted at a node contain smaller values than the
node’s

Exercise: 7.1-6. Is (23,17,14,6,13,10,1,5,7,12) a heap?
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Heapify maintains heap property

Input: An array A, and an index i in array
Assumption: Binary tree rooted at Left(i) and Right(i) are
heaps

Output: heap A, heap property restored

-

Ali] pushed down so that subtree rooted at i becomes a heap

but A[i] smaller than its children (i.e., heap property violated)

/

Auenoyp “X'g

100T ‘9T 4aenaqsg

7 12345678900

) [elifiefe]7 [9]3]2T4]1]

by

e Height of a node: #edges on longest simple path from node to
a leaf

o Height of the tree = height of its root

e Heap of n elements, height is O(Ign)

e Basic operations (remember?) on heaps run in time

proportional to height, thus O(lgn)

Exercises: 7.1-1 and 7.1-2

\ /




1T Auenoyp “X'g

1007 ‘9T £3eniqeg

\Wﬁsasm time of Heapify J

HEAPIFY(A, i)
1 [« LEFT(i)
2 r— RIGHT(})
3 if [ < heap-size[A] and A[/] > A[i]
4 then largest — |
5 else largest — i
6 if r < heap-size{A] and A[r] > A[largest]
7 then largest — r
8 if largest # i
9 then exchange A[/} — A[largest]
10 HEAPIFY(A, largest)

Subtree of size n, rooted at node i:
e O(1) to fix up relationship between A[i], A[Le ft(i), A[Right(i)]
e time to Heapify a subtree of at most 2n/3 nodes
e Running time T'(n) < T(2n/3) + ©(1)
e Solution: case 2 of Master theorem T'(n) = O(lgn)

/o Alternatively, in terms of h, T'(n) = O(h) \

ALienoyp “x'g

100Z ‘9T L1eniqag

HEAPIFY(4, i)
1 [« LEFT(i)
2 r«— RIGHT({)
3 if / < heap-size[A] and A{l] > A[i]
4 then largest — [
5 else largest — i
6 if r < heap-size{A] and A[r] > A[largest]
7 then Jargest — r
8 if largest # i
9 then exchange A[i] — A[largest]
10 HEAPIFY(A4, largest)

Each call stores in largest index of largest of

Ali], A[Left(i), A[Right(7)]

If Afi] is largest, we have a heap!

Otherwise, A[i] swapped with A[largest] — i satisfies heap property
However, largest may violate heap property — recursive call
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Building a heap: use Heapify

Converts array A[l...n] (n = length[A]) into a heap.

Elements in subarray A[(|n/2]) + 1...n] are all leaves, 1-element
heap, no need to heapify them (they’ll stay where there are)
Heapify the remaining elements, from |n/2] downto 1

BuiLD-HEAP(A)

L heap-size[A] «— length[ A

2 for i — |length[A4]/2] downto 1
3 do HEAPIFY(A, )

Build a heap with 4 = (4,1,3,2,16,9, 10,14,8,7)
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HEAPIFY(A, [)

1 !« LEFT(i)
r — RIGHT(i)
if [ < heap-size[A] and A[/] > A[/]
then largest — [
else largest — i
if r < heap-size{A] and A[r] > A[largest]
then largest — r
if largest # i
then exchange A[i] — A[largest]
HEAPIFY(A, largest)

SOV NV AW

Exercise: 7.2-1. Heapify(4,3) on
A= (27,17,3,16,13,10,1,5,7,12,4,8, 9, 0)
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Running time of Build-Heap
Simple upper bound on running time:
e Each call to Heapify costs O(lgn)
e There are at most O(n) calls
e Running time at mot O(nlgn)

e Upper bound correct, but not tight:
tighter upper bound can be computed.
Observation: Cost of call to Heapify depends on height of
node and heights of most nodes are small!

One can prove running time is in O(n)




