Trees

Textbook: Chapter 5, Section 5.5
Tree traversals: Notes on Graphs and Trees by Cusack
Textbook: Chapter 13, Section 13.1

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444
Free tree
A connected, acyclic, undirected graph \rightarrow Tree

A possibly disconnected, acyclic, undirected graph \rightarrow Forest

Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a free tree.
2. Any two vertices in G are connected by a unique simple path.
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected.
4. G is connected, and $|E| = |V| - 1$.
5. G is acyclic, and $|E| = |V| - 1$.
6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle.
(1) \(\rightarrow \) (2) \{
 \begin{enumerate}
 \item \(G \) is a free tree (\(\equiv \) connected, acyclic, undirected graph)
 \item Any two vertices are connected by a unique simple path
 \end{enumerate}

\(G \) connected \(\rightarrow \) any two vertices are connected by at least one simple path, prove this path is unique by contradiction.

Consider \(u \) and \(v \), two vertices linked by 2 simple paths \(p_1 \) and \(p_2 \).

Let \(w \) (resp. \(z \)) the vertex where \(p_1 \) \& \(p_2 \) converge (resp. diverge).

Let \(p' \) (\(p'' \)) the subpath of \(p_1 \) (\(p_2 \)) from \(w \) to \(z \) through \(x \) (\(y \)).

\(p' \) and \(p'' \) share no vertices except their endpoints.

The path obtained by concatenating \(p' \) and reverse of \(p'' \) is a cycle.

The tree is thus cyclic \(\Rightarrow \) Contradiction!

There can be at most one path between any two vertices.
(2) Any two vertices are connected by a unique simple path
(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

Let (u, v) be any edge in E
This edge is a path from u to v ⇒ it must be the unique simple path from u to v
Remove it, and G will be disconnected

Check textbook for: $(3) \rightarrow (4)$, $(4) \rightarrow (5)$, $(5) \rightarrow (6)$, and $(6) \rightarrow (1)$.
Rooted tree: is a free tree T with a **root** r (distinguished node)

![Tree Diagram]

Ancestor of a node x: A node y on the unique path from x to the root

Descendant of y: any node whose ancestor is y

Every node is descendant and ancestor of itself

Proper ancestor: If y is an ancestor of x and $y \neq x$

Proper descendant: If x is a descendant of y and $x \neq y$

Subtree rooted at x: subtree induced by descendants of x, rooted at x
Rooted tree (II)

Parent of \(x \): \(y \) such that \((y, x)\) is the last edge on path from \(r \) to \(x \). Only, \(r \) has no parent.

Child of \(y \): \(x \) such that \((y, x)\) is the last edge on path from \(r \) to \(x \)

Siblings: Two nodes with same parents

Leaf, external node: a node with no children

Internal node: nonleaf node
Rooted tree (III)

Degree of x: number of children of x

Depth of x in T: length of path from r to x

Height of T: largest depth of any node x in T
Rooted tree (IV)

Ordered tree: Children of each node are ordered (1st child, 2nd child, etc.)

(a) and (b) are different if considered as ordered rooted trees
(a) and (b) are same if considered a rooted trees
Binary tree T is a structure defined on a finite set of nodes that either

- contains no nodes, or
- is comprised of 3 disjoint sets of nodes

1. a root node (empty tree, null tree, denoted Nil)
2. a binary tree, called its left subtree
3. a binary tree, called its right subtree
Binary tree T (II)

- If left subtree non empty, its root is the **left child** of root of T
- If right subtree non empty, its root is the **right child** of root of T
- If subtree is the null tree Nil, we say child is **absent, missing**
Binary tree T (III)

FALSE: Binary is an ordered tree in which each node has degree at most 2.

It matters to know the position of an only child: left or right?

(a) and (b) are the same tree
(a) and (b) are the same ordered tree
(a) and (b) are **not** the same binary tree
Positioning information
replace each missing child with a node with no children, drawn as a square

Result: **full binary tree**, each node \{ is either a leaf, or
has a degree 2, exactly

Order of children preserves position information
Positional tree (generalize for k children)

- Children of a node are labeled with distinct positive integers.
- i^{th} child missing if no child is labeled with i

k-ary tree: positional tree with children with labels $> k$ are missing

Binary-tree: is a k-ary tree with $k = 2$

Complete k-ary tree: all leaves have the same depth, and all internal nodes have degree k
Complete k-ary tree

- Number of **leaves** at depth h is
- The **height** of a k-ary complete tree with n leaves is ...
- The number of **internal** nodes is:

 $$1 + k + k^2 + \ldots + k^{h-1} = \sum_{i=0}^{h-1} k^i = \frac{k^h - 1}{k-1}$$

- A complete binary tree has $2^h - 1$ internal nodes.
- A complete binary tree has $2^{(h + 1)} - 1$ nodes.
Binary tree representation as (doubly) linked lists
(see Section 11.4)

Node in T represented

by object with fields:

\[
\begin{aligned}
&key \\
&p : \text{parent} (\text{optional}) \\
&\text{left} : \text{left child} \\
&\text{right} : \text{right child}
\end{aligned}
\]
Binary Tree Traversals

- When we visit each node in the tree exactly once, we say we have **Traversed** the tree.

- A full traversal produces a linear order of the information in a tree.

- There are several ways to traverse a tree.
 1. **Preorder**: visit a node, then traverse its left subtree, and then traverse its right subtree.
 2. **Inorder**: traverse the left subtree, visit the node and then traverse its right subtree
 3. **Postorder**: first traverse the left subtree, traverse the right subtree, and then visit the node.
Assume pointer to root.
Need only simply linked lists,

Inorder-Tree-Walk \(x \)
IF \(x \neq \text{Nil} \)
Then Inorder-Tree-Walk(\(\text{left}(x) \))
 print(\(\text{key}(x) \))
 Inorder-Tree-Walk(\(\text{right}(x) \))

Preorder-Tree-Walk \(x \)
IF \(x \neq \text{Nil} \)
Then print(\(\text{key}(x) \))
 Preorder-Tree-Walk(\(\text{left}(x) \))
 Preorder-Tree-Walk(\(\text{right}(x) \))

Postorder-Tree-Walk \(x \)
IF \(x \neq \text{Nil} \)
Then Postorder-Tree-Walk(\(\text{left}(x) \))
 Postorder-Tree-Walk(\(\text{right}(x) \))
 print(\(\text{key}(x) \))
Binary-tree traversal: example

- **Preorder**: visit a node, then traverse its left subtree, and then traverse its right subtree.

- **Inorder**: traverse the left subtree, visit the node and then traverse its right subtree.

- **Postorder**: first traverse the left subtree, traverse the right subtree.

Preorder: + * * / A B C D E

Inorder: A / B * C * D + E

Infix form of the expression

Postorder: A B / C * D * E +
Binary-search-tree property

Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $key[y] \leq key[x]$. If y is a node in the right subtree of x, then $key[x] \leq key[y]$.
Inorder traversal

simple recursive algorithm that prints out all the keys in a binary search tree in sorted order, thanks to

binary-search-tree property

Inorder-Tree-Walk \((x)\)

IF \(x \neq \text{Nil}\)

Then Inorder-Tree-Walk\((left(x))\)

print\((key(x))\)

Inorder-Tree-Walk\((right(x))\)