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1) G is a free tree (= connected, acyclic, undirected grap
Gis a fi d, acycli di d graph

(2) Any two vertices are connected by a unique simple path

G connected — any two vertices are connected by at least one
simple path, prove this path is unique by contradiction
Consider u and v, two vertices linked by 2 simple paths p; and ps

Let w (resp. z) the vertex where p; & p2 converge (resp. diverge).
Let p’ (p”) the subpath of py (p2) from w to z through z (y).

p’ and p” share no vertices except their endpoints

The tree is thus cyclic = Contradiction!
There can be at most one path between any two vertices

N

The path obtained by concatenating p’ and reverse of p” is a cycle
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Textbook: Chapter 5, Section 5.5
Tree traversals: Notes on Graphs and Trees by Cusack
Textbook: Chapter 13, Section 13.1
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(2) Any two vertices are connected
by a unique simple path
ANV N A Wv Y q plep

(3) G is connected, but if any edge is removed from

E, the resulting graph is disconnected

Let (u,v) be any edge in E
This edge is a path from u to v = it must be the unique simple
path from u to v

Remove it, and G will be disconnected

-

Check textbook for: (3) — (4), (4) — (5), (5) — (6), and (6) — (1).
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CSCE310: Data Structures and Algorithms
www.cse.unl.edu/"choueiry/S01-310/
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Free tree
A connected, acyclic, undirected graph — Tree

A possibly disconnected, acyclic, undirected graph — Forest
Let G = :\..mv be an =.=m:,an8a anwr. The following statements are
equivalent.
1. G is a free tree.
2. Any two vertices in G are connected by a unique simple path.

3. G is connected, but if any edge is removed from E, the resulting graph
is disconnected.

4. G is connected, and |E| = V| — 1.

. G is acyclic, and |[E| = |V| - 1.

6. G is acyclic, but if any edge is added to E, the resulting graph contains
a cycle.
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\HNOOHQQ tree: is a free tree T with a root r (distinguished :oaovJ

Ancestor of a node z: A node y on the unique path from z to
the root

Descendant of y: any node whose ancestor is y

Every node is descendant and ancestor of itself
Proper ancestor: If y is an ancestor of z and y # «
Proper descendant: If x is a descendant of y and = # y

Subtree rooted at x: subtree induced by descendants of x,

/ rooted at = \

v
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Rooted tree (111)
. § | ;
Degree of x: number of children of x
Depth of z in T length of path from 7 to x
o Height of T: largest depth of any node x in T’
v
<
4
Reooted tree (1V)
o [
Ordered tree: Children of each node are ordered (1%t child, 2¢
child, etc.)
(a) and (b) are different if considered as ordered rooted trees
¢ | (a) and (b) are same if considered a rooted trees
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Rooted tree (11)

Parent of z: y such that (y,x) is the last edge on path from r to
2. Only, r has no parent.

Child of y: z such that (y,z) is the last edge on path from r to z
Siblings: Two nodes with same parents
Leaf, external node: a node with no children

Internal node: nonleaf node

\ /




1T Auenoyp “X'g

100Z ‘Lz A1eniqeg

4 N

Binary tree T (III)

(2

FALSE: Binary is an ordered tree in which each node has degree
at most 2.

It matters to know the position of an only child: left or right?

(a) and (b) are the same tree
(a) and (b) are the same ordered tree
(a) and (b) are not the some binary tree
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Pcsiticning infermation
replace each missing child with a node with no children, drawn as a

square

. is either a leaf, or
Result: full binary tree, each node '
has a degree 2, exactly

Order of children preserves position information

\ /
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g Binary tree T' (recursive definition)
is a structure defined on a finite set of nodes that either
e contains no nodes, or
e is comprised of 3 disjoint sets of nodes
1. a root node (empty tree, null tree, denoted Nil)
© 2. a binary tree, called its left subtree
3. a binary tree, called its right subtree
7
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Binary tree T (1)
= (a)
o
o If left subtree non empty, its root is the left child of root of T
o If right subtree non empty, its root is the right child of root of
T
w o If subtree is the null tree Nil, we say child is absent, missing
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Positicnal tree (generalize for k children)

e Children of a node are labeled with distinct positive integers.
e " child missing if no child is labeled with i

k-ary tree: positional tree with children with labels > k are

missing
Binary-tree: is a k-ary tree with k = 2

all leaves have the same depth, and
Complete k-ary tree:
all internal nodes have degree k

. /
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: (s . N
: Binary tree representation as (doubly) linked lists
< (see Section 11.4)
Node in T represented
key
: t(optional
by object with fields: p: parent(optional)
left : left child
= right : right child
Lol
w
<
“ Binary Tree Traversals Courtesy of C. Cusack
o When we visit each node in the tree exactly once, we say we
have Traversed the tree.
e A full traversal produces a linear order of the information in a

tree.
&> e There are several ways to traverse a tree.

1. Preorder: visit a node, then traverse its left subtree, and

then traverse its right subtree.
2. Inorder: traverse the left subtree, visit the node and then
traverse its right subtree

o
g 3. Postorder: first traverse the left subtree, traverse the right
g subtree, and then visit the node.
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Complete k-ary tree

A
lepth 1

height

depth 2

e Number of leaves at depth h is .....

The height of a k-ary complete tree with n leaves is ..

e The number of internal nodes is:
h—1 _ x~h=174 k-1
T4+k+k>+.  + kM =3k =

e A complete binary tree has 2" — 1 internal nodes.

A complete binary tree has 2(h + 1) — 1 nodes.
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