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Cutline
e Representation: Adjacency lists
e Representation: Adjacency matrices
e Breadth-first search (BFS)
e Depth-first search (DFS)

e Topological search of a DAG: as application of Depth-first
search

(Strongly connected components in a directed graph)
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Elementary Graph Algorithms

Textbook, Chapter 23, Sections 23.1, 23.2, 23.3, and 23.4
Please concentrate on the algorithms, their complexity and the

main results, you may ignore the proofs of this chapter.

CSCE310: Data Structures and Algorithms
Www.cse.unl.edu/"choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444
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Representations of Graphs: G = (V, E)

Complete graph: ||Epqz| = IVIC

2
Connected graph: || Eminl = (|[V|| — 1)
Sparse graph: ||E| much smaller than || Epqz|| = O(]|V]?)
Dense graph: ||E|| close to ||Emnaz|| = O(|V]?)

Two standard representations:
1. Adjacency list: preferable for sparse graphs

2. Adjacency matrix: preferable for dense graphs
also for quickly checking whether two vertices are connected
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Methods for:
e representing graphs

e searching graphs

Searching algorithms:
e follow systematically the edges to visit the vertices
e discover structural information of graph

e are central to Algorithmic Graph Theory
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Breadth-first Search (BFS): what is does
Given: G = (V, E) and source (vertex s € E)

e Systematically explores edges of G
to ‘discover’ every vertex e reachable from s

e Computes distance (fewest #edges) from s to all reachable
vertices v

e Produces breadth-first tree, rooted at s and containing all

reachable vertices v
e Path in tree from v to s is the shortest path

e Works both on directed and undirected graphs
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BF'S: how it does it

e First discovers all vertices at distance 1 of s, then distance 2 of
s, etc.

e Discovers all vertices at distance k from s before discovering
any vertices at distance k + 1

e Expands frontier between discovered and undiscovered nodes
uniformly, across breadth of frontier, also called the fringe
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Adjacency list vs. Adjacency matrix
= . .
o e Adjacency matrix preferable when graphs are small
e When graphs are weighted, matrix can store weight at no
additional space cost
>
)
-
&
& /
g
g




[} ALienoyp "x°g

100z ‘sz 111dy

-

BF'S: procedure

e Assumes adjacency-list representation
e color|u]: color of a vertex

e 7[u]: predecessor, or parent, or u
m[s] = Nil and w[u] = Nil if u is white

e d[u]: distance from s to u, and is computed by the algorithm

e Q: queue, first-in first-out to manage fringe/gray vertices
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BFS: ‘coloring’

e Progress monitored by coloring vertices: white, gray, black.
White: not visited, Black: fully expanded, Gray: visited but
not fully expanded (fringe),

e All nodes start white, and later may become grey then black

e A vertex is discovered first time it is encountered (becomes
gray or black)

e A vertex u is black when every v with (u,v) € E is grey or
black (has been discovered)

e A grey vertex may have some white neighbors: gray vertices
are the fringe, the frontier between discovered and undiscovered

vertices
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BF'S: mechanism

o Initially, contains only s, root

o When a white vertex v is discovered during the scanning of the

adjacency list of an already discovered vertex u, v and (u,v)
are added to the tree: u is the predecessor of parent of v in the

three: m[v] = u. At most one parent per vertex.

e If u is on path in the tree from root s to a vertex v, u is
ancestor of v and v is descendant of u

. v
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Lines 1-4: paint every vertex u, white, set d[u] and 7|[u]
Line 5-6-7: initialize s, color([s], d[s], 7[s]

Line 8: initializes @, puts s in the fringe
@ will contain gray vertices

Lines 9-18: main loop, iterates until Q empty (all nodes black,
expanded)

Line 10: pops vertex from head of queue

Line 11: considers each vertex v in Adj[u], if v is white (it is
not discovered),

Line 13-16: then BFS discovers it: update color, parent,
distance and put in tail of @

Lines 17-18: When all neighbors of u have been examined, u is

/ blackened and removed from @ (fully expanded)

/

w
<
(", )
o @ Y n O
| @ o0 o0 =
& o o o n
&3]
W v I
N\ N\ 8
() 0 g
o S 3
’ o D =
o e 0 © ®
® 2 o e o
o o o ?
L = o )
= = «© &
olaljo|o|w|n|< olajo|o|v|n|< olalo|o|p|n|< SPOQESAOD
pio(ow v B |plolowy 2B |[ple]olelv[e[B] |[ple]o|e o[BS
o (p|e oo ol (p|p oo o |p|e oty [T |ple|T|Tlg] &
babbmbabbmbavbmbavbms
=1 o |® 1 Q| @ |® El [=1 ® o 3 Q| @ |® ] M
INEMENI Ll Lk e) (oY N w(N|F [P ola N SN |Plola ZM.,.ZTTOPIOJ
Dlp|p|o v 2o o olp|o v 2o 2|0 0|20 EWESSde
,w olg|gigigigig gglggigig|g mMmMMMm mmeMMmD
= Q| o = Q] = j=X
: BRRER G BeRRBS FZRBERS SFREREC S
AN */
w
<
v N
H BFS: Complexity
2
e Line 12: ensures that every node is examined (and examined)
at most once, and hence dequeued at most once.
e Enqueuing, Dequeuing: O(1)
e Thus, total time for queue operations: O(V)
I3 e Since Adj[u] is scanned only before u is dequeued, it is scanned
at most once
e Sum of length of adjacency lists is ©(F) = time spent on total
scanning is O(E)
e Overhead for initialization: O(V)
g e Total running time of BFS is O(V + E), linear in size of the
m adjacency-list representation of G
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Breadth-first tree

Print-Path(G, s,v)
Ifv=s
then print s
else if w[v] = nil
then print “no path from” s “t0” v “exists”
else Print-Path(G, , s, w[v])
print v

e By Lemma 23.5: BFS builds the BF-tree as it searches the
graph: 7[v]

e Procedure runs in time linear in the number of vertices in the

path: each recursive call is for a path of one vertex shorter

. /

12 Auenoyp “X'€

100z ‘gz 112dy

4 N

Shortest path: Definitions

e The shortest-path distance (s, v) from s to v is defined as the

minimum #edges in any path from s to v, or co if there is no
path from s to v.

e A path of length of §(s,v) is a shortest path from s to v

e Important result: BFS computes shortest-path distances (d)
and shortest paths (BF-tree) to all reachable vertices

. /
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Breadth-first tree
The 7 field of each vertex defines the predecessor tree of each node

The breadth-first tree of G is the predecessor subgraph
Gr = (Vu, Ex) where:

o V. ={veV :xv] # Nil} U{s}
o E.={(n[v],v) € E :veV;—{s}}

\ /
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G = (V,E): (un)directed graph and s € V: an arbitrary vertex

e Lemma 23.1: V(u,v) € E,6(s,v) < §(s,u) +1

e Lemma 23.2: When BFS in run on G from source s, upon
termination, Yv € V, d[v] > d(s, v)

e To prove d[v] > d(s,v), we need to look at how @ operates

e Lemma 23.2: During BFS, suppose Q = (v1,v2,...,v,) (v1 is
head and v, tail), then d[v,] < d[vi] + 1 and d[v;] < d[v;11] for
i=1,2,...,r—1

e Theorem 23.4: Correctness of BFS.
BFS discovers every vertex v € V reachable from the source s
Upon termination, d[v] = (s, v)
Vv # s, reachable from s, one of the shortest path from s to v

/ is the shortest path from s to 7[v] followed by the edge (7[v], S\
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Depth-first search: coloring

Nodes are colored as they are visited, a node w is
o first white, before time d[u]
e gray when discovered, between time d[u] and f[u]

e and black when finished, (i.e., when adjacency list has been
visited completely, when we backtrack over it), after time f[u]

N
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Depth-first search: Principle
e Searched deeper in the graph whenever possible

e Explores the most recently discovered node v that still has
unexplored neighbors

e When all neighbors of v have been explored, it backtracks to
explore the unexplored neighbors of the parent of v, if any

e Repeats until discovering all nodes reachable from an original

source vertex

e If unexplored nodes remain, choose one as new source, and

repeat procedure

e Repeat until all vertices are discovered
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Depth-first search: data structures
e timestamps, d, f
e color, ¢

e predecessor, T
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Depth-first search: time-stamp

Each node has two “time-stamps”, d[v] and f[v]

d[v] records when it is discovered

f[v] records when we are done considering its adjacency list
(and we backtrack) (time-stamps € [1...2||V]]]

d[u] < flu], used in other algorithms such as topological sort)

/
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Depth-first forest: running time

Lines 1-2, 5-7: ©(V) (exclusive call to DFS-Visit)

DFS-Visit called only on white nodes, so, once on every node
In DFS-Visit, lines 3-6 is called ||Adj[v]|| times, in total ©(F)
Total cost is O(V + E)

6C Auenoyp “X'€

100Z ‘gz 112dy

4 N

Depth-first forest

e Whenever a node v is discovered while scanning the adjacency

list of a node u, 7w(v) — u (7 = predecessor)

e Predecessor subgraph:
E; ={(n[v],v) € E :v €V and w[v] # Nil}

e Predecessor subgraph may have several trees, a forest

e Each node of V' appears in exactly one tree: forest is made up
of disjoint trees
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u v
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\Umﬁnrnmﬂma forest: pseudocode /

DFS(G)

1 for each vertex u € V[G]

2 do color{u] — WHITE

7[u] — NIL
time — 0
for each vertex u € V[G]
do if color{u] = wHITE
then DFS-VisiT(u)

N v AW

DFS-VisiT(u)

1 color{u] — GrRAY

2 d[u] — time — time + 1
3 for each v € Adj[u] > Explore edge (u,v).
4 do if color[v] = WHITE
5 then n[v] — u

m Umm.Sm.._AS
q
m

> White vertex u has just been discovered.

color{u] — BLACK > Blacken u; it is finished.
flu] — time «— time + 1
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BF'S: Example Courtesy of Dr. Cusack
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Z | Topological sort: pseudocode
Topological-Sort (G)
e Call DFS(G) to compute f(v) of each vertex
e As a vertex is finished (its f(v) computed) insert it onto the
B
o front of a linked list
o return the linked list of vertices
Complexity of Topological-Sort(G) is ©O(V + E):
— DFS(GQ) is ©(V + E)
>
% | — insertion in front of list ©(1)
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Topoelegical sert

Topological sort of a dag G = (V, E) is a linear ordering of all
nodes in G such that for every edge directed/oriented from a node
u to a node v, u appears before v in the ordering

Topological sort is an ordering of the nodes along a horizontal line
so that all directed edges for from left to right

When an directed graph is not acyclic, a topological sort does not

exist
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